OXFORDAQA

INTERNATIONAL QUALIFICATIONS

(Please write clearly in block capitals.	
	Centre number Candidate number]
	Surname	_
	orename(s)	_
	Candidate signature I declare this is my own work.	-

INTERNATIONAL A-LEVEL PHYSICS

Unit 5 Physics in practice

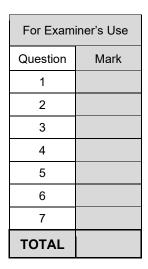
Thursday 13 June 2024

07:00 GMT

Time allowed: 2 hours

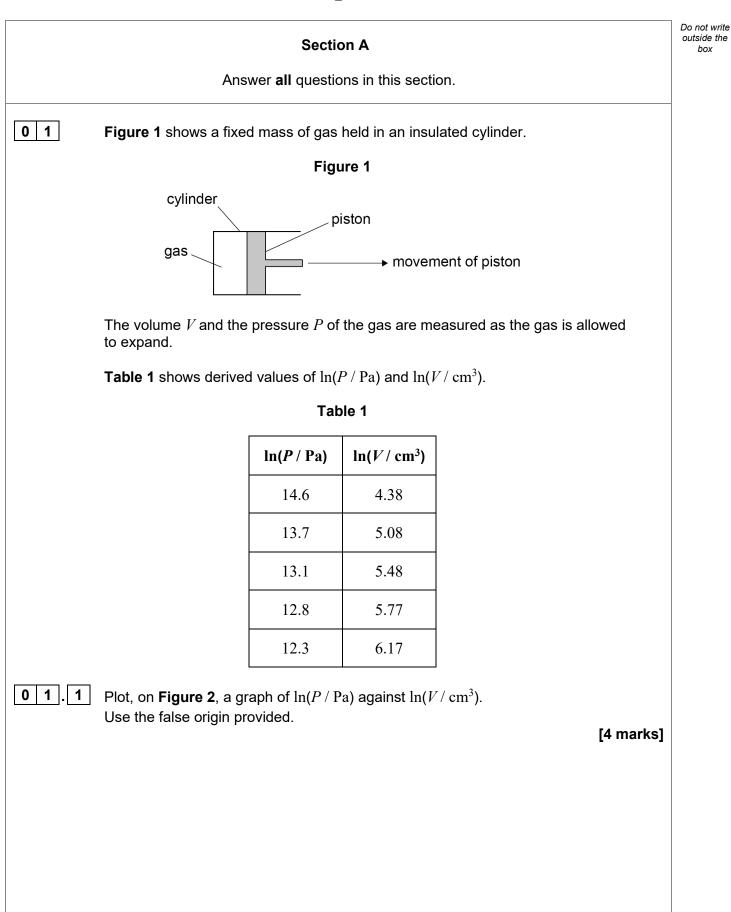
Materials

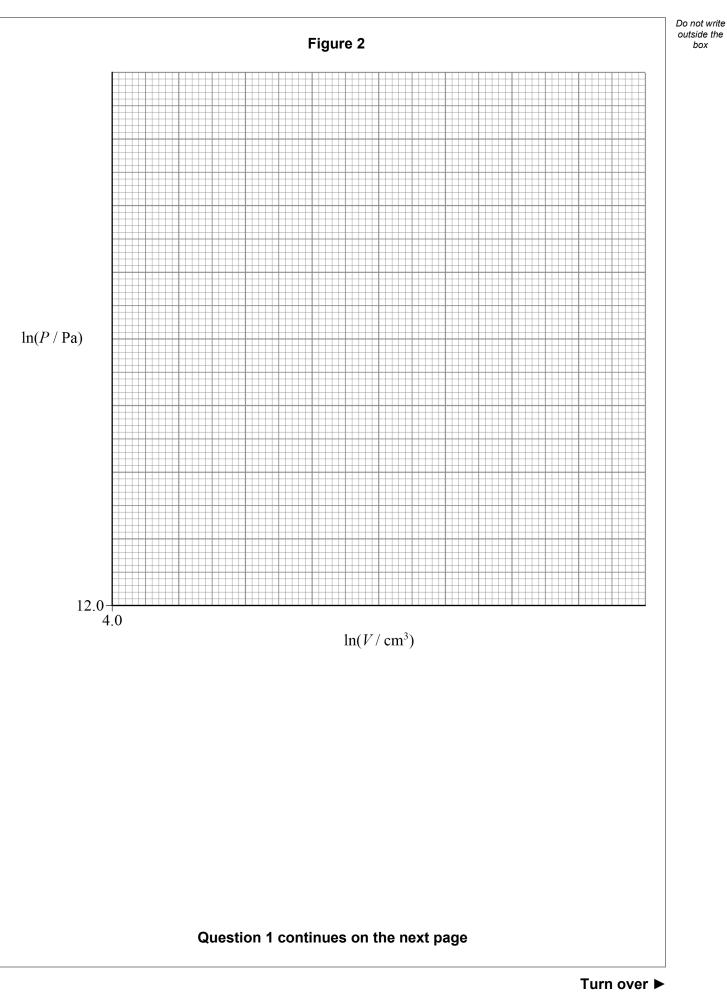
For this paper you must have:

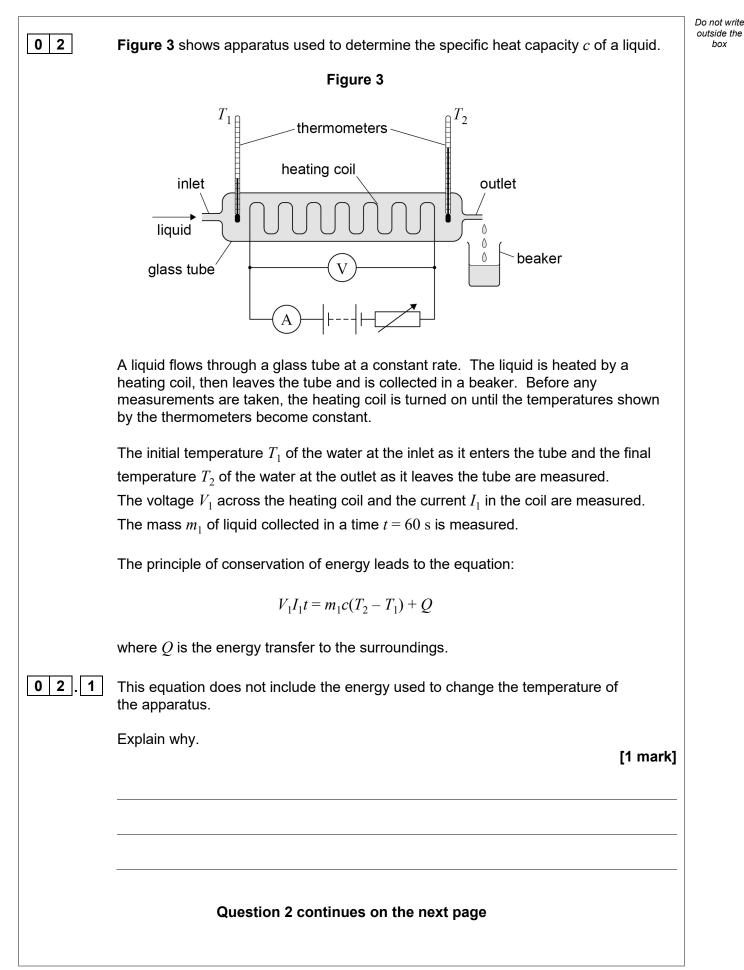

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate
- a protractor.

Instructions

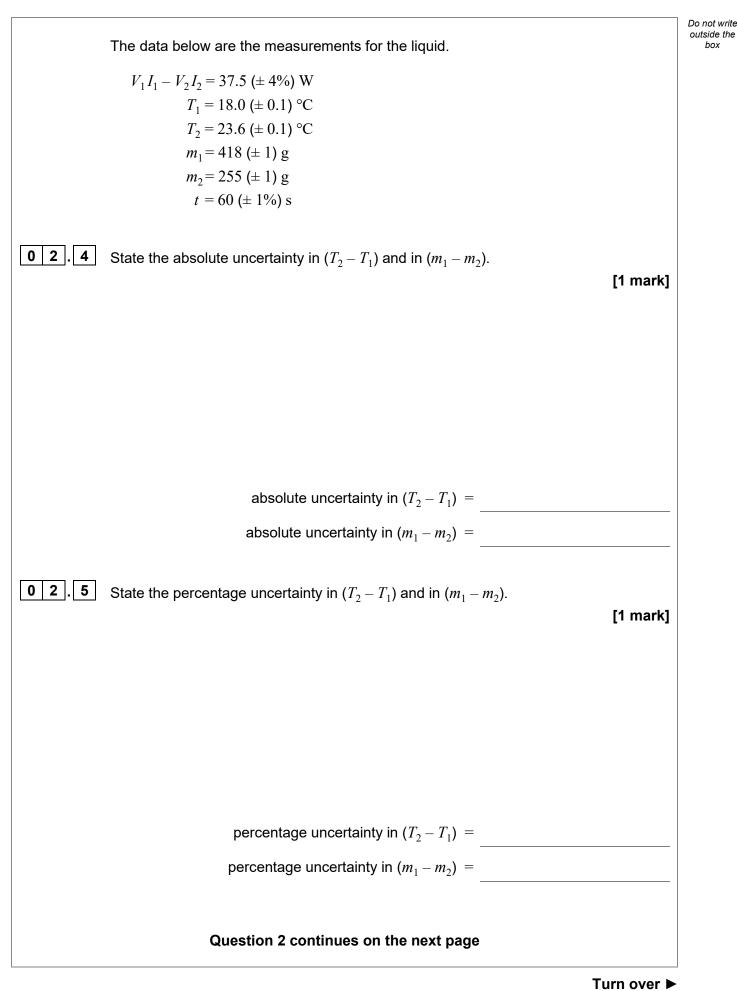
- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.


Information


- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

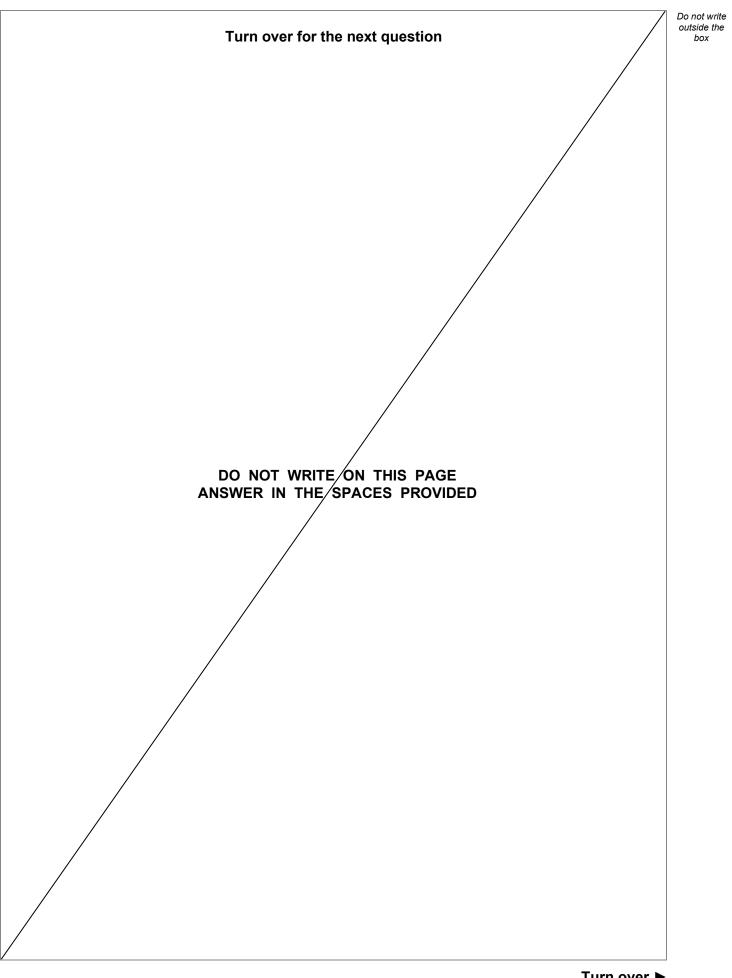


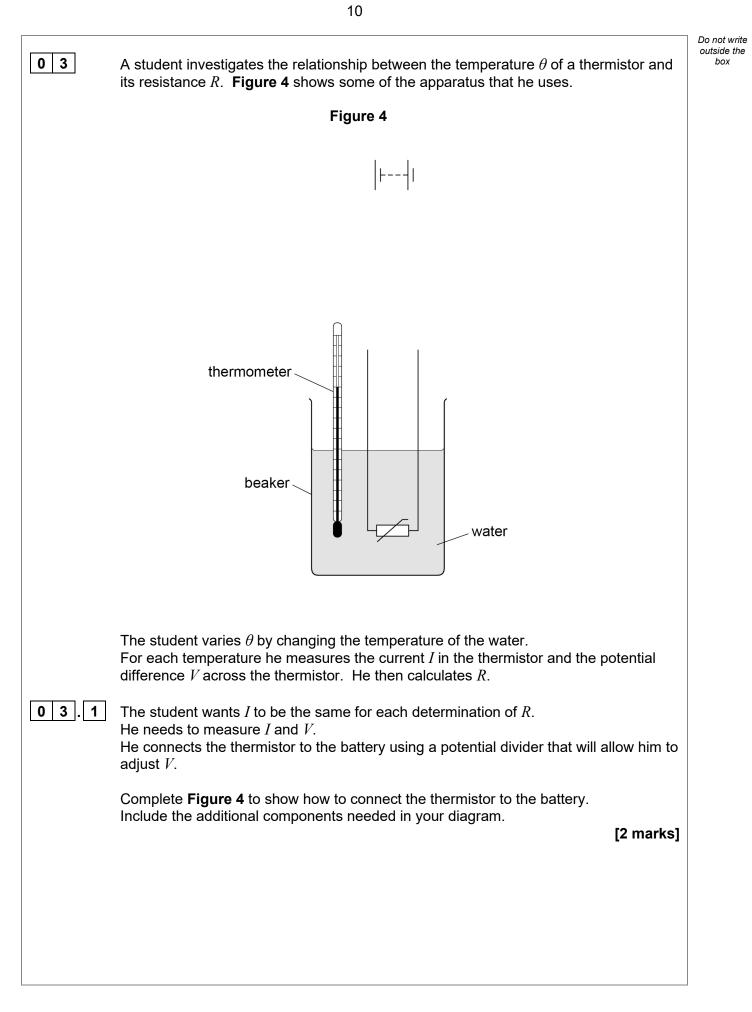
01.2	Determine the gradient of the graph. [2 marks]	Do not write outside the box
01.3	gradient = <i>P</i> and <i>V</i> are connected by the relationship:	
	$PV^{\gamma} = k$ where k and γ are constants.	
	Determine γ for this gas. [2 marks]	
	γ =	8



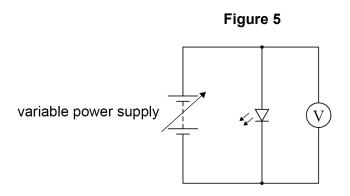
IB/M/Jun24/PH05

02.2	The rate of flow of liquid is now changed. The experiment is repeated to eliminate Q from the calculation. The voltage and current are adjusted so that T_1 and T_2 have the same values as they had in the first determination. The new value V_2 of the voltage and the new value I_2 of the current are now measured. The new mass m_2 of liquid collected in a time $t = 60$ s is measured. Explain why Q is the same for both determinations. [2 marks]	Do not write outside the box
02.3	Show that <i>c</i> is given by:	
	c = $\frac{(V_1I_1 - V_2I_2)t}{(m_1 - m_2)(T_2 - T_1)}$ [2 marks]	




02.6	Calculate c in J g^{-1} K ⁻¹ .	Do not write outside the box
	[1 mark]	
	c = J g ⁻¹ K ⁻¹	
02.7	Calculate the absolute uncertainty in the value for c .	
	[2 marks]	
	absolute uncertainty = J $g^{-1} K^{-1}$	
0 2 . 8	During the experiment, some liquid leaks from the apparatus at the inlet in Figure 3 .	
	Explain whether this leak affects the calculated value for <i>c</i> . [1 mark]	
		11

IB/M/Jun24/PH05



		Tab	le 2		
		<i>θ</i> / °C	<i>R</i> / kΩ		
		20	12		
		40	5.0		
		60	3.5		
		80	2.0		
·····	of the thermistor. Suggest how to a	nalyse these result	ely proportional to the to check whether or		
	You are not requi	red to analyse the c	ata.	[2	2 marks]
					1
	Describe two wa whether his hypo	ys in which the stud thesis is valid.	ent could improve his		cide
	whether his hypo	thesis is valid.	ent could improve his	[2	
	whether his hypo	thesis is valid.		[2	2 marks]
	whether his hypo	thesis is valid.		[2	2 marks]
	whether his hypo	thesis is valid.		[2	2 marks]
	whether his hypo	thesis is valid.		[2	2 marks]

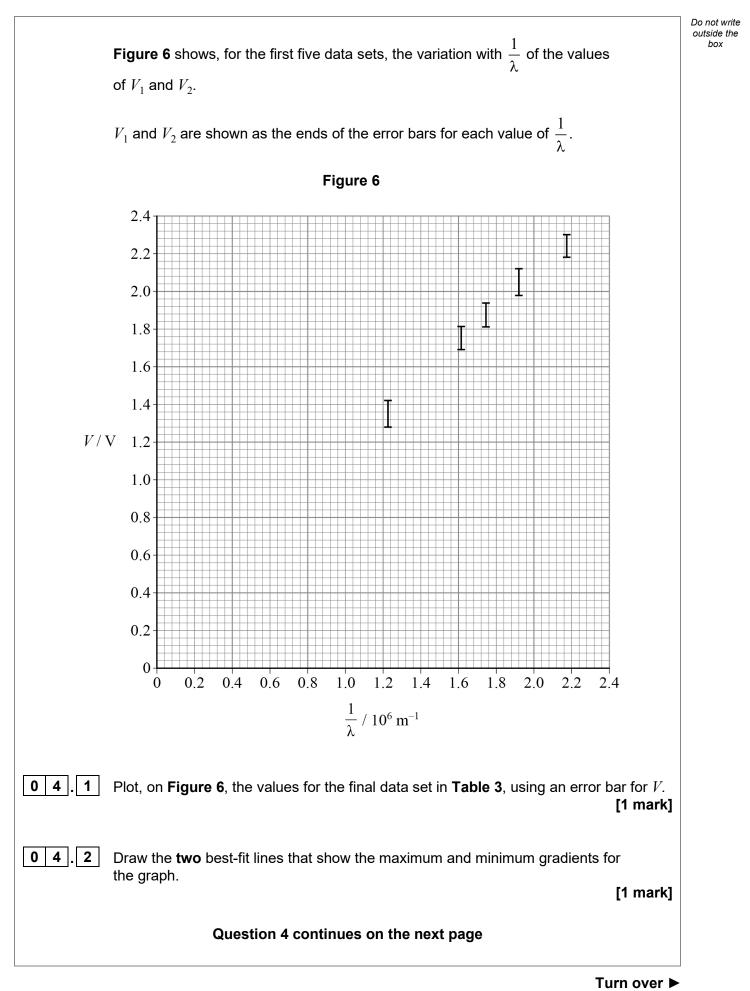
A student estimates the Planck constant h using the circuit shown in **Figure 5**. The student uses a variable power supply to change the voltage V across the LED.

The student has six different LEDs. Each LED emits a different wavelength λ of light.

The pd across one LED is increased from zero. The student first notices that the LED is emitting light when the pd is V_1 .

The pd across the LED is now decreased from a large value towards zero. The student first notices that the LED has stopped emitting light when the pd is V_2 .

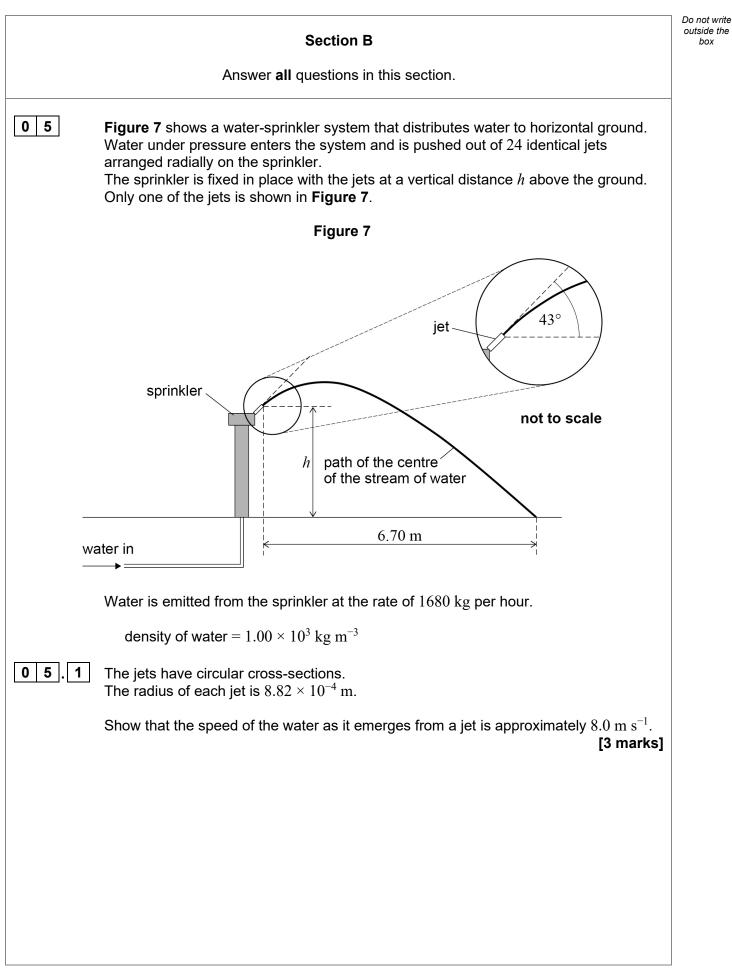
For each LED, the student records V_1 and V_2 and obtains λ from the LED manufacturer's data.


Table 3 shows V_1 and V_2 together with the manufacturer's value of λ and the value of $\frac{1}{\lambda}$ for all six LEDs.

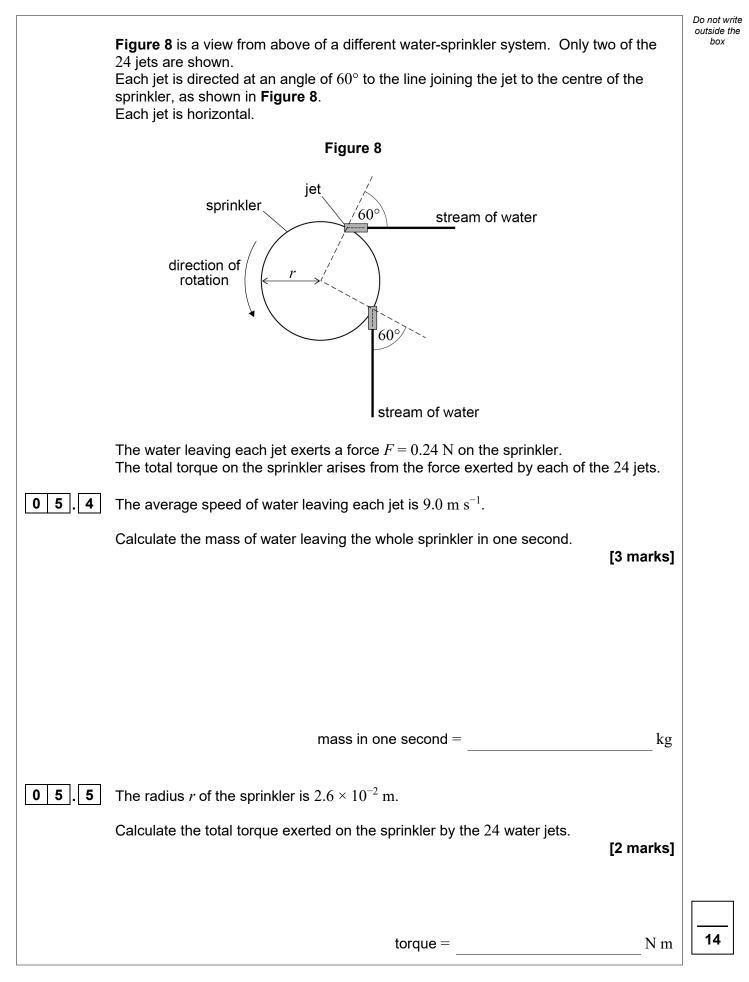
λ / nm	$\frac{1}{\lambda}/\ 10^6\ m^{-1}$	V_1 / V	V_2 / V
460	2.17	2.30	2.18
520	1.92	2.12	1.98
570	1.75	1.94	1.81
620	1.61	1.81	1.69
810	1.23	1.42	1.28
940	1.06	1.28	1.16

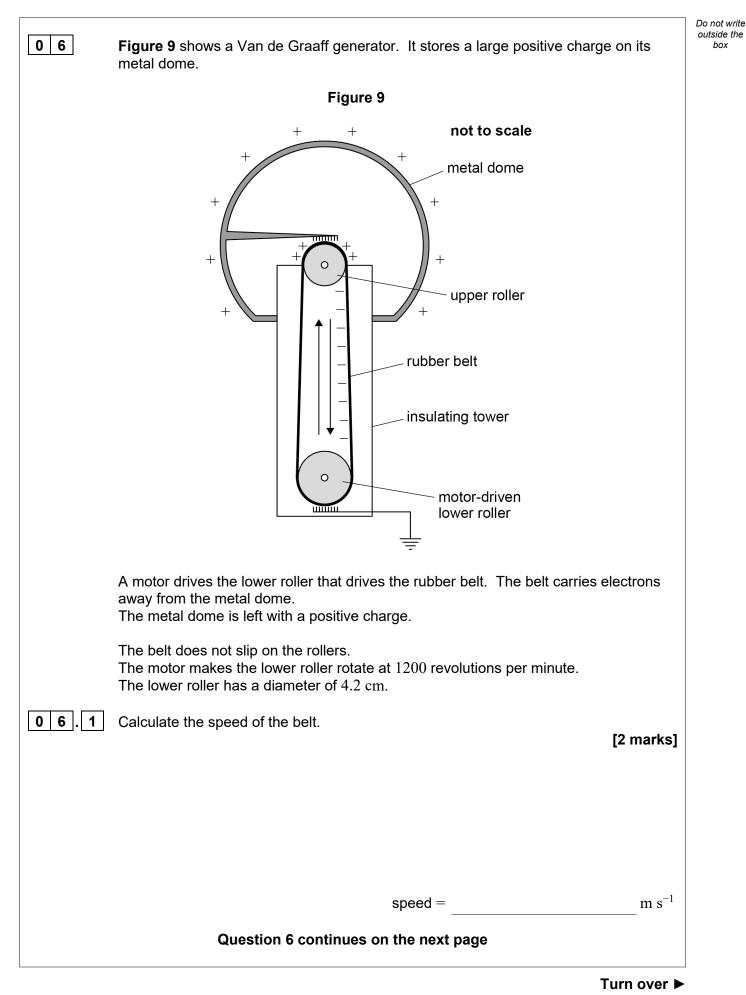
Table	3
-------	---

Do not write



	The student suggests that λ is related to <i>V</i> by:	Do not write outside the box
	$\lambda = \frac{hc}{eV}$	
04.3	Calculate, using the gradients of your best-fit lines in Figure 6 , a maximum value and a minimum value for the Planck constant h .	
	[4 marks]	
	maximum value of $h = $ J s	
	minimum value of $h =$ J s	
04.4	Comment on the accuracy of the determination of <i>h</i> in Question 04.3 . [3 marks]	


04.5	Suggest why, for each LED, V_1 is always greater than V_2 .	Do not write outside the box
	[1 mark]	
04.6	Suggest one practical way in which the student could improve the measurement of V_1 and V_2 in order to reduce the size of each error bar. [1 mark]	
		11
	END OF SECTION A	
	Turn over ▶	



	The jet shown in Figure 7 is at an angle of 43° to the horizontal. The centre of the stream of water reaches the ground at a horizontal distance of 6.70 m from the jet.	Do not wri outside th box
05.2	Calculate <i>h</i> . Assume that air resistance is negligible. [4 marks]	
0 5.3	$h = __\m$ m In practice, not all of the water leaving the jet has the same speed.	
	Explain why water from the jet travels a range of horizontal distances before reaching the ground. [2 marks]	
	Question 5 continues on the next page Turn over ►	

06.2	The upper roller has a period of rotation of 40 ms.	Do not write outside the box
	Calculate the circumference of the upper roller. [1 mark]	
	circumference =m	
	When the Van de Graaff generator is charged, the electric potential at the surface of its dome is $120\;000\;\mathrm{V}.$	
	The dome of the Van de Graaff generator acts as a capacitor that stores energy. Consider the dome to be a sphere of radius r .	
06.3	Show that the capacitance of the dome is $4\pi\epsilon_0 r$. [2 marks]	
06.4	The Van de Graaff generator is a machine that transfers energy. Assume that the useful energy output of the Van de Graaff generator is equal to the energy stored in this capacitor.	
	The dome has a diameter of 35 cm . It takes approximately 5 s for the Van de Graaff generator to become fully charged. The motor that drives the belt has a power rating of 48 W .	
	Estimate the percentage efficiency of the Van de Graaff generator as it is charging. [3 marks]	
	percentage efficiency =	

0 6.5	When the Van de Graaff generator is placed in a vacuum and fully charged, it used to accelerate charged particles.	can be	Do not write outside the box
	An ion with a specific charge of $+4.82 \times 10^7 \text{ C kg}^{-1}$ is released from the dome		
	Calculate the maximum possible speed of the ion.		
	[4	4 marks]	
	maximum speed =	m s ⁻¹	12
	Turn over for the next question		
	Ти	rn over ►	

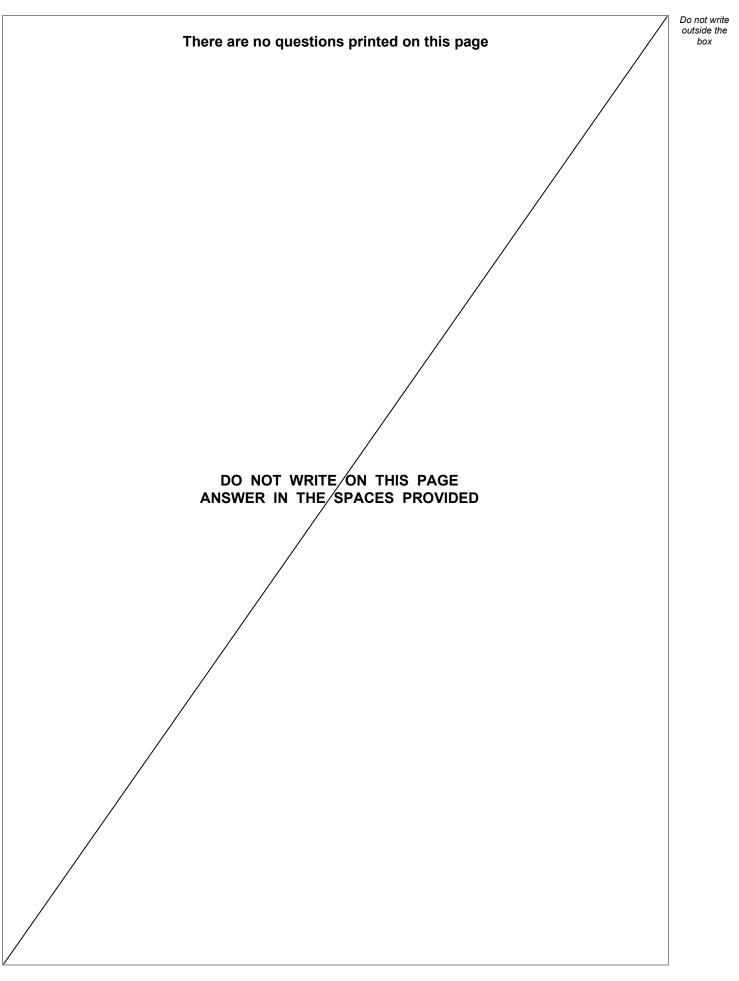
0 7	The perce		ranium deposits are U-235 and U-23 osits of ore are approximately the same nge with time.	
		hows the percentages of atoms of U oday and 1.7×10^9 years ago.	J-235 and U-238 present in uranium	
		Table 4		
	Isotope	Percentage present today	Estimated percentage present 1.7×10^9 years ago	
	U-235	0.72	3.1	
	U-238	99.28	96.9	
0 7	ago are ap decay o	the estimated percentages of U-23 oproximately consistent with the percentages of U-23 constant for U-235 = 9.84×10^{-10} ye constant for U-238 = 1.55×10^{-10} ye	ear ⁻¹	

Do not write

outside the box

	The U-235 in a uranium deposit can lead to a nuclear reaction occurring naturally. Such a natural nuclear reactor operated in a uranium deposit about 1.7×10^9 years	Do no outsic bo
	ago.	
	 Evidence of this reactor is shown by: the presence in the uranium deposit of nuclides that are products of U-235 fission this uranium deposit having a smaller proportion of U-235 than deposits in other parts of the world. 	
0 7.2	Explain why the percentage of U-235 in a uranium deposit is an important factor in determining whether a chain reaction can occur. [2 marks]	
	Water was able to penetrate the deposit and come into close contact with the U-235.	
) 7.3	Explain why fission chain reactions could only be sustained when water was in close contact with the U-235.	
	[4 marks]	

IB/M/Jun24/PH05


Turn over ►

07.4	The fission reactions occurred in start-stop cycles. The fission reactions heated the water and turned it into high-pressure steam at temperatures of several hundred °C. The pressure of the steam forced the water away from the U-235 deposit, stopping the fission. As the rock cooled and the steam condensed, water re-entered the deposit and the fission cycle began again. The duration of each cycle was a few hours from start to finish. Suggest one property of the rock that would affect the duration of each start-stop cycle. [1 mark]	Do not write outside the box
0 7.5	Suggest one property of the water that would affect the duration of each start–stop cycle. [1 mark]	
07.6	The mean energy released from the fission of a U-235 nucleus is 211 MeV. Show that an energy release of 211 MeV is equivalent to a change in mass defect of approximately 4×10^{-28} kg. [2 marks]	

07.7	It is estimated that the total mass defect from all of the U-235 fissions was 4.6 kg during the lifetime of the natural reactor. Calculate, in kg, the total mass of U-235 nuclei that underwent fission during the lifetime of the reactor. molar mass of U-235 = 0.235 kg [3 marks]	Do not write outside the box
0 7.8	total mass of U-235 = kg One reason why the natural nuclear reactor stopped operating was because the percentage of U-235 in the deposit decreased. Suggest one other reason why the reactor stopped operating. [1 mark]	
	END OF QUESTIONS	18

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet
	is published after each live examination series and is available for free download from www.oxfordaqa.com Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

