OXFORDAQA

INTERNATIONAL QUALIFICATIONS

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

INTERNATIONAL A-LEVEL PHYSICS

Unit 4 Energy and Energy resources

Tuesday 16 January 2024

07:00 GMT

Time allowed: 2 hours

Materials

For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Section A	Do not write outside the box
Answer all questions in this section.	
0 1 . 1 State what is meant by the internal energy of a system. [2 ma	rks]
0 1.2 Figure 1 shows an enlarged view of a cylinder used in a bicycle suspension system Air trapped in the cylinder is compressed when a person is on the bicycle. Figure 1 uspension system uspension system uspension system uspension system uspension system uspension system uspension system	 n.

The trapped air and the cylinder and piston are at the same temperature. As the person gets off the bicycle the trapped air expands.

The trapped air does 350 J of work and 20 J of energy is transferred by heating.

Calculate the change in internal energy ΔU of the trapped air as the person gets off the bicycle.

[2 marks]

 $\Delta U =$

4

J

Do not write outside the box

Turn over for the next question

Turn over ►

Figure 4 shows apparatus used by a student in an experiment to estimate the specific latent heat of ice.

Crushed ice at a temperature of $0\ ^{\circ}\mathrm{C}$ is packed around an electrical heater which is initially switched off.

Water from melted ice passes through a wire mesh and is collected in a beaker. More crushed ice is added to the plastic funnel to replace this melted ice.

Measurements are made to determine how much ice is melted by heating from the surroundings.

16.0 g of water is collected in 10.0 minutes with the heater switched off.

The heater is switched on and new measurements are made. The heater transfers energy at a rate of 32 W.

41.6 g of water is collected in 5.0 minutes with the heater switched on.

	Question 3 continues on the next page	
	ratio =	
	rate of heat transfer from heater rate of heat transfer by conduction through funnel	
03.2	Determine the ratio	
	area in contact with melting ice = $1.75 \times 10^{-2} \text{ m}^2$ thermal conductivity of plastic = $0.12 \text{ W m}^{-1} \text{ K}^{-1}$	
	thickness of plastic $= 1.7 \text{ mm}$ temperature of outer surface $= 5.5 \text{ °C}$	
	The student obtains the following data for the funnel:	
	specific latent heat of ice = unit =	
	[4 marks]	
03.1	Determine the specific latent heat of ice for this experiment. State an appropriate unit for your answer.	Do not write outside the box

Turn over ►

033	The student suggests that the mass of ice melted before the heater is switched on is	Do not write outside the box
	only due to heat transfer by conduction through the plastic funnel.	
	Show, using your answer to Question 03.2 and data from page 6, that the student's suggestion is incorrect	
	[2 marks]	
0 3.4	The value for the specific latent heat of ice obtained from this experiment is less than the accepted value.	
	Explain two changes to the experimental procedure that will increase the accuracy of	
	the result. [2 marks]	
	1	
	2	
		10

04.3	For safety, the angular speed of the jib must not exceed 0.10 rad s^{-1} .	Do not write outside the box
	Determine whether the jib exceeds this speed as it rotates.	
	[3 marks]	
0 4 . 4	On another occasion the jib is moving at a constant angular speed ω . The applied torque is removed and the jib moves through an angle θ_1 before coming to rest.	
	The distance <i>d</i> is increased and the jib is again made to move at a constant angular speed ω . The applied torque is removed and the jib now moves through an angle θ_2 before coming to rest.	
	The resistive torque does not change.	
	Compare θ_2 with θ_1 .	
	Explain your answer.	
	[3 marks]	
		13

[4 marks]

Table 1 contains data about one solar cell in the array when light of intensity L_1 is

A solar array is made from identical solar cells.

0 5.2	During a test, light of intensity L_2 is incident normally on the solar cell. The efficiency of the solar cell is 24%. The maximum power output of the solar cell is now 3.5 W and the voltage at maximum power is 0.61 V. The area of the solar cell is 150 cm ² . Calculate L_2 . [3 marks]	Do not write outside the box
05.3	$L_2 =$ W m ⁻² When the intensity is L_2 the solar array has a maximum power output of 364 W.	
	The voltage across the array at maximum power is 4.88 V. Deduce the arrangement of cells in the array. [3 marks]	
		10

06	Fast-moving neutrons are released during fission in a thermal nuclear reactor. The function of part \mathbf{X} of this reactor is to reduce the speed of these fast-moving neutrons to thermal speeds.	Do not writ outside the box
06.1	Name part X. [1 mark]	
06.2	Name one suitable material for X . [1 mark]	
06.3	Explain why the fast-moving neutrons need to be reduced to thermal speeds to maintain a chain reaction in this reactor. [2 marks]	
06.4	A fast-moving neutron has a kinetic energy of 2.4 MeV. After one collision, the kinetic energy is reduced to 1.8 MeV. Estimate the kinetic energy of the neutron after three more collisions. Assume that the neutron's kinetic energy decreases by the same percentage in each collision. [2 marks]	
	kinetic energy = MeV	

06.5	Another thermal nuclear reactor uses a different material for X . In this read fast-moving neutron needs fewer collisions to reduce it to thermal speeds.	o دtor, a	Do not wri outside th box
	Suggest why fewer collisions are needed when using X .	[2 marks]	
06.6	One fission reaction is		
	$^{235}_{92}$ U + $^{1}_{0}$ n $\rightarrow ^{137}_{52}$ Te + $^{97}_{40}$ Zr + $^{1}_{0}$ n		
	Calculate, in MeV , the energy released in this reaction.		
	mass of $\frac{235}{92}$ U = 235.0439 u		
	mass of $\frac{137}{52}$ Te = 136.9256 u		
	mass of $\frac{97}{40}$ Zr = 96.9110 u		
	mass of $\frac{1}{0}$ n = 1.00867 u		
		[4 marks]	
	energy released =	MeV	
	Question 6 continues on the next page		

Turn over ►

6.7	State one risk and one benefit in the use of thermal nuclear reactors for power generation	outsid bc
	[2 marks]	
	risk	
	benefit	
		14

0 7	The average radius R of a nucleus is related to the nucleon number A by	Do not write outside the box
	$R = R_0 A^{\frac{1}{3}}$	
07.1	Show that this relationship is consistent with the assumption that all nuclei have the same density	
	[2 marks]	
07.2	A helium $\begin{pmatrix} 4\\ 2 \end{pmatrix}$ nucleus has a radius of 1.68×10^{-15} m.	
	Calculate, in fm, the radius of a gold $\begin{pmatrix} 197\\79 \end{pmatrix}$ Au nucleus. [3 marks]	
	radius = fm	5
	END OF SECTION A	
	Turn over	_ ►

Each of the questions in this section is followed by four responses, A , B , C and D . For each question select the best response. Only one answer per question is allowed. For each question, completely fill in the circle alongside the appropriate answer. CORRECT METHOD WRONG METHODS	Section B	Do not write outside the box
For each question select the best response. Only one answer per question is allowed. To reach question, completely fill in the circle alongside the appropriate answer. CORRECT METHOD	Each of the questions in this section is followed by four responses, A, B, C and D.	
Only one answer per question is allowed. To reach question, completely fill in the circle alongside the appropriate answer. CORRECT METHOD WRONG METHODS G G G G G G G If you want to change your answer you must cross out your original answer as shown. If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. G G G G G G G G G G	For each question select the best response.	
air at higher temperature 4.5 m air at lower 2.2 m 2.77 kJ h^{-1} air at lower 0.45 m The rate of energy transfer through the wall is 277 kJ h^{-1}. What is the temperature difference across the wall? [1 mark]	 Only one answer per question is allowed. For each question, completely fill in the circle alongside the appropriate answer. CORRECT METHOD • WRONG METHODS • • • • • • • • • • • • • • • • • • •	
What is the temperature difference across the wall?	air at higher temperature 4.5 m air at lower temperature 2.2 m 2.77 kJ h^{-1} 2.77 kJ h^{-1}	
	What is the temperature difference across the wall?	

09

A fixed mass of an ideal gas has a pressure P and a volume V. The temperature of the gas increases from 273 K to 410 K.

Which row shows possible values for the new pressure and new volume of the gas?

[1 mark]

Do not write outside the box

	Pressure	Volume	
Α	Р	$\frac{V}{2}$	0
в	2 <i>P</i>	V	0
с	2 <i>P</i>	$\frac{V}{3}$	0
D	3 <i>P</i>	$\frac{V}{2}$	0

Turn over for the next question

box

Do not write outside the

box

1 3 A mixture of two unreactive gases **P** and **Q** is at a constant temperature. The particles of **P** each have a mass m. The particles of **Q** each have a mass 2m. The root mean square speed of the particles of **P** is v. What is the root mean square speed of the particles of Q? [1 mark] A $\frac{v}{2}$ \bigcirc B $\frac{v}{\sqrt{2}}$ \bigcirc **C** v \bigcirc **D** $\sqrt{2}v$ \bigcirc 1 4 A wind turbine generator (WTG) has blades that sweep out a circle of diameter 4.20 m. The power output of the WTG is 40% of the maximum power available from the wind. At one instant, the speed of the wind on the blades is 6.9 m s^{-1} . What is the maximum electrical power available from the WTG at this instant? density of air = 1.2 kg m^{-3} [1 mark] **A** 1.1 kW \bigcirc $\textbf{B} \ 2.7 \ kW$ \bigcirc C 4.4 kW**D** 6.8 kW \bigcirc

Х

Υ

 \bigcirc

 \bigcirc

IB/M/Jan24/PH04

С

D

Υ

Ζ

16 The components of a pumped storage system (PSS) include a turbine and a generator. Which statement is correct? [1 mark] A Gravitational potential energy of the water is transferred to kinetic energy \bigcirc B The generator transfers electrical energy to kinetic energy of the water. \bigcirc C The turbine acts as a motor when energy is being stored in the PSS. \bigcirc D Over a cycle, the electrical energy input to the PSS is greater than the electrical energy output. \bigcirc 17 Which is a defining property of a back-up power station? $[1 mark]$ A It uses wind, solar or hydroelectric energy sources. \bigcirc B It can be switched on quickly in periods of high demand. \bigcirc D It is more efficient than a base-power station. \bigcirc 18 Which is the fundamental (base) unit for specific heat capacity? $[1 mark]$ A kg m ² s ⁻² K ⁻¹ \bigcirc $[1 mark]$ A kg m ² s ⁻² K ⁻¹ \bigcirc $[1 mark]$ A kg m ² s ⁻² K ⁻¹ \bigcirc \bigcirc B kg ⁻¹ m ² s ⁻² K ⁻¹ \bigcirc \bigcirc M kg m ² s ⁻⁴ K ⁻¹ \bigcirc \bigcirc	16The components of a pumped storage system (PSS) include a turbine and a generator.Which statement is correct?[1 mark]A Gravitational potential energy of the water is transferred to kinetic energy \odot B The generator transfers electrical energy to kinetic energy of the water. \odot C The turbine acts as a motor when energy is being stored in the PSS. \bigcirc D Over a cycle, the electrical energy input to the PSS is greater than the electrical energy output. \bigcirc 17Which is a defining property of a back-up power station?[1 mark]A It uses wind, solar or hydroelectric energy sources. \bigcirc B It can be switched on quickly in periods of high demand. \bigcirc C It can store excess energy from base-power station. \bigcirc 18Which is the fundamental (base) unit for specific heat capacity?18kg m ² s ⁻² K ⁻¹ A kg m ² s ⁻² K ⁻¹ \bigcirc B kg ⁻¹ m ² s ⁻² K ⁻¹ \bigcirc B kg ⁻¹ m ² s ⁻² K ⁻¹ \bigcirc B kg m ² s ⁻² K ⁻¹ \bigcirc B kg m ² s ⁻² K ⁻¹ \bigcirc B kg m ² s ⁻² K ⁻¹ \bigcirc D kg m ² s ⁻⁴ K ⁻¹ \bigcirc			
Which statement is correct? [1 mark] A Gravitational potential energy of the water is transferred to kinetic energy in the turbine. \Box B The generator transfers electrical energy to kinetic energy of the water. \Box C The turbine acts as a motor when energy is being stored in the PSS. \Box D Over a cycle, the electrical energy input to the PSS is greater than the electrical energy output. \Box 17 Which is a defining property of a back-up power station? $[1 mark]$ A It uses wind, solar or hydroelectric energy sources. \Box B It can be switched on quickly in periods of high demand. \Box D It is more efficient than a base-power station. \Box I is more efficient than a base-power station. \Box A kg m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box A kg m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box D kg m ² s ⁻⁴ K ⁻¹ \Box	Which statement is correct? [1 mark] A Gravitational potential energy of the water is transferred to kinetic energy in the turbine. \Box B The generator transfers electrical energy to kinetic energy of the water. \Box C The turbine acts as a motor when energy is being stored in the PSS. \Box D Over a cycle, the electrical energy input to the PSS is greater than the electrical energy output. \Box 17 Which is a defining property of a back-up power station? [1 mark] A It uses wind, solar or hydroelectric energy sources. \Box B It can be switched on quickly in periods of high demand. \Box I It is more efficient than a base-power station. \Box I Is more efficient than a base-power station. \Box A kg m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box	1 6	The components of a pumped storage system (PSS) include a turbine and a	generator.
	A Gravitational potential energy of the water is transferred to kinetic energy \Box B The generator transfers electrical energy to kinetic energy of the water. \Box C The turbine acts as a motor when energy is being stored in the PSS. \Box D Over a cycle, the electrical energy input to the PSS is greater than the electrical energy output. \Box Mhich is a defining property of a back-up power station? $[1 \text{ mark}]$ A It uses wind, solar or hydroelectric energy sources. \Box B It can be switched on quickly in periods of high demand. \Box C It can store excess energy from base-power station. \Box It is more efficient than a base-power station. \Box Mhich is the fundamental (base) unit for specific heat capacity? $[1 \text{ mark}]$ A kg m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box M kg m ² s ⁻² K ⁻¹ \Box M kg m ² s ⁻² K ⁻¹ \Box M kg m ² s ⁻² K ⁻¹ \Box M kg m ² s ⁻² K ⁻¹ \Box M kg m ² s ⁻² K ⁻¹ \Box M kg m ² s ⁻⁴ K ⁻¹ \Box		Which statement is correct?	[1 mark]
B The generator transfers electrical energy to kinetic energy of the water. \Box <	B The generator transfers electrical energy to kinetic energy of the water. \Box C The turbine acts as a motor when energy is being stored in the PSS. \Box D Over a cycle, the electrical energy input to the PSS is greater than the electrical energy output. \Box M Which is a defining property of a back-up power station? \Box A It uses wind, solar or hydroelectric energy sources. \Box B It can be switched on quickly in periods of high demand. \Box C It can store excess energy from base-power station. \Box D It is more efficient than a base-power station. \Box M kg m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box C m ² s ⁻² K ⁻¹ \Box D kg m ² s ⁻⁴ K ⁻¹ \Box		A Gravitational potential energy of the water is transferred to kinetic energy in the turbine.	
C The turbine acts as a motor when energy is being stored in the PSS. \bigcirc D Over a cycle, the electrical energy input to the PSS is greater than the electrical energy output. \bigcirc 17 Which is a defining property of a back-up power station? $[1 mark]$ A It uses wind, solar or hydroelectric energy sources. \bigcirc \bigcirc B It can be switched on quickly in periods of high demand. \bigcirc \bigcirc C It can store excess energy from base-power station. \bigcirc \bigcirc 18 Which is the fundamental (base) unit for specific heat capacity? $[1 mark]$ A kg m ² s ⁻² K ⁻¹ \bigcirc $[1 mark]$ kg m ² s ⁻² K ⁻¹ \bigcirc $[1 mark]$ b kg m ² s ⁻² K ⁻¹ \bigcirc $[1 mark]$	C The turbine acts as a motor when energy is being stored in the PSS. \Box D Over a cycle, the electrical energy input to the PSS is greater than the electrical energy output. \Box 17Which is a defining property of a back-up power station? $[1 mark]$ A It uses wind, solar or hydroelectric energy sources. \Box B It can be switched on quickly in periods of high demand. \Box C It can store excess energy from base-power station. \Box D It is more efficient than a base-power station. \Box 18Which is the fundamental (base) unit for specific heat capacity? $[1 mark]$ A kg m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box C m ² s ⁻² K ⁻¹ \Box D kg m ² s ⁻⁴ K ⁻¹ \Box		B The generator transfers electrical energy to kinetic energy of the water.	0
Image: Definition of the sector call energy output.Image: Definition of the sector call energy output.Image: Definition of the sector call energy output.17Which is a defining property of a back-up power station?Image: Definition of the sector call energy sources.Image: Definition of the sector call energy energy from base-power station.Image: Definition of the sector call energy energy from base-power station.Image: Definition of the sector call energy energy energy energy from base-power station.Image: Definition of the sector call energy ener	D Over a cycle, the electrical energy input to the PSS is greater than the electrical energy output. \Box 17Which is a defining property of a back-up power station? $[1 mark]$ A It uses wind, solar or hydroelectric energy sources. \Box \Box B It can be switched on quickly in periods of high demand. \Box \Box C It can store excess energy from base-power stations. \Box \Box D It is more efficient than a base-power station. \Box \Box 18Which is the fundamental (base) unit for specific heat capacity? $[1 mark]$ A kg m ² s ⁻² K ⁻¹ \Box \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box D kg m ² s ⁻⁴ K ⁻¹ \Box		C The turbine acts as a motor when energy is being stored in the PSS.	0
17Which is a defining property of a back-up power station?[1 mark]A It uses wind, solar or hydroelectric energy sources. \Box B It can be switched on quickly in periods of high demand. \Box C It can store excess energy from base-power stations. \Box D It is more efficient than a base-power station. \Box 18Which is the fundamental (base) unit for specific heat capacity?[1 mark]A kg m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box C m ² s ⁻² K ⁻¹ \Box D kg m ² s ⁻⁴ K ⁻¹ \Box	17Which is a defining property of a back-up power station?[1 mark]A lt uses wind, solar or hydroelectric energy sources. \Box B lt can be switched on quickly in periods of high demand. \Box C lt can store excess energy from base-power stations. \Box D lt is more efficient than a base-power station. \Box 18Which is the fundamental (base) unit for specific heat capacity?[1 mark]A kg m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box D kg m ² s ⁻⁴ K ⁻¹ \Box		D Over a cycle, the electrical energy input to the PSS is greater than the electrical energy output.	0
A It uses wind, solar or hydroelectric energy sources. B It can be switched on quickly in periods of high demand. C It can store excess energy from base-power stations. D It is more efficient than a base-power station. 1 3 Which is the fundamental (base) unit for specific heat capacity? [1 mark] A kg m ² s ⁻² K ⁻¹ B kg ⁻¹ m ² s ⁻² K ⁻¹ C m ² s ⁻² K ⁻¹ D kg m ² s ⁻⁴ K ⁻¹ C	A It uses wind, solar or hydroelectric energy sources. B It can be switched on quickly in periods of high demand. C It can store excess energy from base-power stations. D It is more efficient than a base-power station. 1 8 Which is the fundamental (base) unit for specific heat capacity? [1 mark] A kg m ² s ⁻² K ⁻¹ B kg ⁻¹ m ² s ⁻² K ⁻¹ C m ² s ⁻² K ⁻¹ D kg m ² s ⁻⁴ K ⁻¹ O	1 7	Which is a defining property of a back-up power station?	[1 mark]
B It can be switched on quickly in periods of high demand. \bigcirc C It can store excess energy from base-power stations. \bigcirc D It is more efficient than a base-power station. \bigcirc Mkich is the fundamental (base) unit for specific heat capacity? [1 mark] A kg m ² s ⁻² K ⁻¹ \bigcirc B kg ⁻¹ m ² s ⁻² K ⁻¹ \bigcirc C m ² s ⁻² K ⁻¹ \bigcirc D kg m ² s ⁻⁴ K ⁻¹ \bigcirc	B It can be switched on quickly in periods of high demand. \bigcirc C It can store excess energy from base-power stations. \bigcirc D It is more efficient than a base-power station. \bigcirc M kg m ² s ⁻² K ⁻¹ \bigcirc K kg m ² s ⁻² K ⁻¹ \bigcirc K kg ⁻¹ m ² s ⁻² K ⁻¹ \bigcirc K kg m ² s ⁻² K ⁻¹ \bigcirc K kg m ² s ⁻² K ⁻¹ \bigcirc K kg m ² s ⁻² K ⁻¹ \bigcirc		A It uses wind, solar or hydroelectric energy sources.	
C It can store excess energy from base-power stations. \Box D It is more efficient than a base-power station. \Box M Which is the fundamental (base) unit for specific heat capacity? [1 mark] A kg m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box C m ² s ⁻² K ⁻¹ \Box D kg m ² s ⁻⁴ K ⁻¹ \Box	C It can store excess energy from base-power stations. \Box D It is more efficient than a base-power station. \Box Multich is the fundamental (base) unit for specific heat capacity? [1 mark] A kg m ² s ⁻² K ⁻¹ \Box B kg ⁻¹ m ² s ⁻² K ⁻¹ \Box C m ² s ⁻² K ⁻¹ \Box D kg m ² s ⁻⁴ K ⁻¹ \Box		B It can be switched on quickly in periods of high demand.	
D It is more efficient than a base-power station. \bigcirc 18Which is the fundamental (base) unit for specific heat capacity?[1 mark]A kg m² s²² K⁻1 \bigcirc B kg⁻1 m² s²² K⁻1 \bigcirc C m² s² K⁻1 \bigcirc D kg m² s²⁴ K⁻1 \bigcirc	I is more efficient than a base-power station. \Box 18Which is the fundamental (base) unit for specific heat capacity?[1 mark]A kg m² s ⁻² K ⁻¹ \Box B kg ⁻¹ m² s ⁻² K ⁻¹ \Box C m² s ⁻² K ⁻¹ \Box D kg m² s ⁻⁴ K ⁻¹ \Box		C It can store excess energy from base-power stations.	
1 8 Which is the fundamental (base) unit for specific heat capacity? [1 mark] A kg m ² s ⁻² K ⁻¹ \bigcirc B kg ⁻¹ m ² s ⁻² K ⁻¹ \bigcirc C m ² s ⁻² K ⁻¹ \bigcirc D kg m ² s ⁻⁴ K ⁻¹ \bigcirc	18Which is the fundamental (base) unit for specific heat capacity?[1 mark]A kg m² s² K⁻¹ \bigcirc B kg⁻¹ m² s² K⁻¹ \bigcirc C m² s² K⁻¹ \bigcirc D kg m² s² K⁻¹ \bigcirc		D It is more efficient than a base-power station.	
A kg m ² s ⁻² K ⁻¹ \bigcirc B kg ⁻¹ m ² s ⁻² K ⁻¹ \bigcirc C m ² s ⁻² K ⁻¹ \bigcirc D kg m ² s ⁻⁴ K ⁻¹ \bigcirc	A kg m ² s ⁻² K ⁻¹ \bigcirc B kg ⁻¹ m ² s ⁻² K ⁻¹ \bigcirc C m ² s ⁻² K ⁻¹ \bigcirc D kg m ² s ⁻⁴ K ⁻¹ \bigcirc	1 8	Which is the fundamental (base) unit for specific heat capacity?	[1 mark]
B kg ⁻¹ m ² s ⁻² K ⁻¹ \bigcirc C m ² s ⁻² K ⁻¹ \bigcirc D kg m ² s ⁻⁴ K ⁻¹ \bigcirc	B kg ⁻¹ m ² s ⁻² K ⁻¹ \bigcirc C m ² s ⁻² K ⁻¹ \bigcirc D kg m ² s ⁻⁴ K ⁻¹ \bigcirc		A kg m ² s ⁻² K ⁻¹ \bigcirc	
C $m^2 s^{-2} K^{-1}$ O D $kg m^2 s^{-4} K^{-1}$ O	C $m^2 s^{-2} K^{-1}$ O D $kg m^2 s^{-4} K^{-1}$ O		B $kg^{-1} m^2 s^{-2} K^{-1}$	
D kg m ² s ⁻⁴ K ⁻¹	D kg m ² s ⁻⁴ K ⁻¹		C $m^2 s^{-2} K^{-1}$	
			D kg m ² s ⁻⁴ K ⁻¹	


```
IB/M/Jan24/PH04
```


2 1		eadings taken to determine	the amount of gas n , in n	noi, in a sample.	
	Quantity	Reading	Absolute uncertainty		
	pressure	$1.00 \times 10^5 \mathrm{Pa}$	1×10^3 Pa		
	temperature	27.0 °C	0.5 °C		
	volume	1.00 m ³	0.01 m ³		
	The uncertainty in the	molar gas constant is negl	igible.		
	what is the percentage	e uncertainty in <i>n</i> ?		[1 mark]	
	A 1.8%				
	B 2.2%				
	C 3.9%				
	D 6.0%				
22	A nuclear fusion reacted	or uses plasma containme	nt.		
	Which is not a difficult	y for this type of reactor?		[1 mark]	
	A confining the plasm	а	0		
	B maintaining the high	n temperature of the plasm			
	C processing radioact	ive products of the reactio	ns 💿		
	D sustaining fusion ov	ver a period of time	0		15
		END OF QUESTIC	DNS		

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

