OXFORDAQA

INTERNATIONAL QUALIFICATIONS

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

INTERNATIONAL A-LEVEL PHYSICS

Unit 4 Energy and Energy resources

Tuesday 11 June 2024

07:00 GMT

Time allowed: 2 hours

Materials

For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

		Do not write
0 1.2	The HEP station has an alternating output of voltage 69 kV rms.	box
	Calculate the peak current output from the HEP station. [2 marks]	
	peak current =A	
	A second type of HEP station uses a dam and a reservoir to store water.	
0 1 . 3	Suggest one environmental benefit of the station shown in Figure 1 compared with one that uses a dam and a reservoir. [1 mark]	
0 1.4	State what is meant by a base-power station. Go on to discuss whether either type of HEP station can operate as a base-power station. [3 marks]	
		9

		Do not write outside the
0 3	A deuterium $\binom{2}{1}$ H nucleus with an initial kinetic energy of 1.6×10^{-14} J approaches	XOQ
	a second deuterium nucleus head-on. The second nucleus is initially stationary.	
	When the nuclei have reached a minimum separation d , each nucleus has a kinetic energy of 4.0×10^{-15} J.	
03.1	Calculate <i>d</i> . [3 marks]	
	<i>d</i> =m	
03.2	On another occasion, two deuterium $inom{2}{1}\mathrm{H}inom{2}$ nuclei have initial kinetic energies	
	of 1.6×10^{-14} J each.	
	On this occasion, their minimum separation is different from the value of d in Question 03.1 .	
	Suggest, without calculation, how this minimum separation differs from the value of d	
	in Question 03.1. [3 marks]	

	two nuclei to fuse.		
	Deuterium nuclei can fuse in a plasma in which the mean kinetic energy of nu is 1.6×10^{-14} J.	ICIEI	
	Suggest why some deuterium nuclei can fuse in this plasma.	[1 mark]	
0 3.4	Explain two reasons why the kinetic theory of gases can model the behaviour ideal gas but cannot model the behaviour of a plasma.	r of an 2 marks]	
	1		
	2		
0 3.5	An ideal gas has particles with a mean kinetic energy of 1.6×10^{-14} J.		
	Calculate the absolute temperature of the gas.	2 marks]	

04	0 4 The solar fusion cycle has three stages. The equation for the reaction in the third stage of the cycle is:				Do not write outside the box
		$\frac{3}{2}$ He + $\frac{3}{2}$ He	$\rightarrow \frac{4}{2}$ He + 2 ¹ ₁ p		
	Table 1 shows	the mass of each part	icle involved.		
		Tab	le 1	_	
		Particle	Mass / u		
		$\frac{3}{2}$ He	3.016029		
		$\frac{4}{2}$ He	4.002603		
		$\frac{1}{1}p$	1.007823		
0 4 . 1	Show that the ϵ	energy equivalent of a $\times 10^{-27}$ kg	mass of I u is approxi	mately 930 MeV.	
	1 u – 1.001	^ 10 Kg		[2 marks]	
04.2	Calculate, in M	eV, the energy releas	ed in one reaction in th	e third stage of the solar	
	fusion cycle.			[2 marks]	
			energy =	MeV	

The equation for a reaction in the second stage of the solar fusion cycle is: ${}^{2}_{1}\text{H} + {}^{1}_{1}\text{p} \rightarrow {}^{3}_{2}\text{He} + \gamma$ Table 2 shows the binding energy of each particle involved. Table 2 Particle Binding energy / pJ $^2_1\mathrm{H}$ 0.35593 1 0 1p $^3_2\mathrm{He}$ 1.23489 0 γ Explain how the second stage contributes approximately $1.8\times 10^{-12}\,J$ of the energy 0 4 3 released in one complete cycle. Support your explanation with a calculation. [2 marks] 0 4 4 Write the equation for the reaction in the first stage of the solar fusion cycle. [2 marks] Question 4 continues on the next page

		Do not write
04.5	It is estimated that the Sun contains 2×10^{30} kg of hydrogen $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and emits energy	outside the box
	at the rate of $4 \wedge 10^{\circ}$ w.	
	Each solar fusion cycle produces $4.5 \times 10^{-12} \text{ J}$ of energy.	
	Estimate, in years, the maximum length of time for which the Sun can continue to emit energy at its current rate using only the solar fusion cycle.	
	mass of 1.0 mol of ${}^1_1\mathrm{H}$ = 1.0 × 10 ⁻³ kg	
	[4 marks]	
	time =years	
04.6	The fusion of two helium nuclei in the core of a star leads to the formation of heavier elements.	
	Explain why helium fusion requires the plasma temperature to be greater than the temperature needed for hydrogen fusion	
	[2 marks]	
		14

0 5	A wind turbing has a rater with a diameter of 125 m	Do not wri outside th box
	A wind turbine has a rotor with a diameter of 135 m. Calculate, in MW, the maximum power available from the air to the turbine when the	
	wind speed is 11.4 m s^{-1} .	
	density of air = 1.2 kg m^{-3} [2 marks]	
	maximum power = MW	
0 5.2	State two reasons why the total kinetic energy of the wind passing through the turbine	
	is not available to the turbine. [2 marks]	
	1	
	2	
	The rotor accelerates from rest to its maximum angular speed of 1.41 rad s^{-1} .	
0 5 . 3	Calculate, in revolutions per minute, the maximum frequency of rotation of the rotor. [1 mark]	
	frequency = revolutions per minute	
]

		_
	The moment of inertia of the rotor is $7.1 \times 10^7 \text{ kg m}^2$.	Do not wr outside th box
0 5.5	Calculate the initial angular acceleration of the rotor.	
	angular acceleration = $rad s^{-2}$	
0 5.6	Calculate the maximum rotational kinetic energy of the rotor. [2 marks]	
	maximum kinetic energy = J	
0 5 7	Explain why the angular acceleration of the rotor varies between $t = 0$ and $t = 55$ s. [3 marks]	
		14

Turn over ►

Do not write outside the box

Figure 4 shows a pump connected to a bicycle tyre through a connecting tube and a pressure-operated valve.

Initially, the piston is at the top of the cylinder as shown in **Figure 4**. The cylinder contains 2.5×10^{-4} m³ of air at a pressure of 1.0×10^5 Pa and a temperature of 17 °C. The initial pressure of the air in the tyre is 4.5×10^5 Pa.

When the pump is operated for the first time, the piston is pushed down quickly. All the air remains in the cylinder until the cylinder pressure is 4.5×10^5 Pa. The valve opens when the cylinder pressure and the tyre pressure are equal. All the air in the cylinder then enters the tyre.

Figure 5 shows the variation of pressure with volume for the air in the cylinder.

06.1	Determine the work done in compressing the air in the cylinder to a pressure 145×105 P	Do not v outside box
	ot 4.5×10^5 Pa. [3 mail	ˈks]
	work done =	J
	Colordate in IV, the terror active of the sin in the ordinate when the processing here.	
0 0 . 2	Calculate, in K, the temperature of the air in the cylinder when the pressure has increased to 4.5×10^5 Pa.	41
		ſĸsj
	tomporaturo —	V
	Question 6 continues on the next page	
	Turn ov	er ►

06.3	The tyre needs an additional 0.27 mol of air to be inflated to its correct pressure. The volumes of the connecting tube and the valve are negligible.	Do not write outside the box
	Calculate the number of times the pump has to be operated to inflate the tyre. [3 marks]	
	number =	
06.4	Explain, with reference to the first law of thermodynamics, why the temperature of the air in the cylinder increases when the piston is pushed down quickly. [3 marks]	
		11
	END OF SECTION A	

	Section B	
	Each of the questions in this section is followed by four responses, A, B, C a	and D .
	For each question select the best response.	
Only o For ea	one answer per question is allowed. Ich question, completely fill in the circle alongside the appropriate answer.	
CORREC	T METHOD WRONG METHODS 🛞 💿 📾 🔟	
i you v	vant to change your answer you must cross out your original answer as show	rn. 🔀
f you v Is shov	vish to return to an answer previously crossed out, ring the answer you now v wn.	vish to select
′ou ma	ay do your working in the blank space around each question but this will not b	be marked.
	use additional pages for this working.	
7	A non-ideal gas has molecules that contain more than one atom. Each molecule has a moment of inertia. The internal energy of the gas is the sum of:	[1 mark]
7	A non-ideal gas has molecules that contain more than one atom. Each molecule has a moment of inertia. The internal energy of the gas is the sum of: A the translational kinetic energies of all of the molecules.	[1 mark]
7	 A non-ideal gas has molecules that contain more than one atom. Each molecule has a moment of inertia. The internal energy of the gas is the sum of: A the translational kinetic energies of all of the molecules. B the translational, rotational and vibrational kinetic energies of all of the molecules. 	[1 mark]
7	 A non-ideal gas has molecules that contain more than one atom. Each molecule has a moment of inertia. The internal energy of the gas is the sum of: A the translational kinetic energies of all of the molecules. B the translational, rotational and vibrational kinetic energies of all of the molecules. C the potential energies and the translational kinetic energies of all of the molecules. 	[1 mark]

outside the 1 0 The front of a house has three parts: a wall, a window and a door. wall window door-The table shows the $\ensuremath{\mathrm{U}}\xspace$ and the areas for the three parts. U-value / Area / Part W m⁻² K⁻¹ m^2 1.0 8.0 wall window 1.5 2.3 door 2.2 1.6 Which row shows the parts in order from the smallest rate of heat transfer to the largest rate of heat transfer? [1 mark] A wall, window, door \bigcirc B wall, door, window \bigcirc C window, door, wall \bigcirc D window, wall, door \bigcirc Turn over for the next question

Turn over ►

Do not write

box

1 1 Atmospheric pressure is 100 kPa.

Sample **X** of an ideal gas has a volume of 2.0 m³ and an initial pressure of 100 kPa above atmospheric pressure. It is compressed at constant temperature until its volume is $V_{\rm X}$ and its pressure is 300 kPa above atmospheric pressure.

Sample **Y** of an ideal gas has a volume of 2.0 m³ and an initial temperature of 177 °C. It is heated at constant pressure until its temperature is 354 °C and its volume is $V_{\rm Y}$.

What are $V_{\rm X}$ and $V_{\rm Y}$?

	$V_{\rm \chi}$ / m ³	$V_{\rm Y}$ / ${ m m}^3$	
A	1.0	2.8	0
в	1.0	4.0	0
с	0.67	2.8	0
D	0.67	4.0	0

[1 mark]

Do not write outside the

box

			Do not write
1 2	A student uses a microscope to observe Brownian motion in some smoke.		outside the box
	Which statement is not true?	[1 mark]	
	A Randomly moving air molecules are in collision with smoke particles.	0	
	B Smoke particles are seen to move randomly.	0	
	C Air molecules are seen to move randomly.	0	
	D The random motion of smoke particles demonstrates the random motion of air molecules.	0	
1 3	A hydrogen $\begin{pmatrix} 1\\ 1 \end{pmatrix}$ nucleus has a radius of approximately $1~{ m fm}.$		
	Which is the best estimate of the density of a helium-4 $\begin{pmatrix} 4\\ 2 \end{pmatrix}$ nucleus?		
		[1 mark]	
	A $2 \times 10^{17} \text{ kg m}^{-3}$		
	B $4 \times 10^{17} \text{ kg m}^{-3}$		
	C $1 \times 10^{18} \text{ kg m}^{-3}$		
	D $2 \times 10^{18} \text{ kg m}^{-3}$		
	Turn over for the next question		

1 6 Neutron absorption cross-section σ is measured in cm². Nuclei with a large value of σ are more likely to absorb neutrons.

The table gives nucleon numbers and approximate values of σ for four isotopes.

Which isotope would be most suitable as a moderator in a thermal fission reactor?

[1 mark]

Do not write outside the

box

			l.
	Nucleon number	σ / cm ²	
Α	6	1000	0
В	7	0.0005	0
С	181	0.0005	0
D	177	1000	0

1 7

Used fuel rods from a nuclear reactor are stored in water for a long time. The water contains dissolved boron.

Possible reasons for this type of storage are:

- 1. to prevent overheating due to radioactive decay of nuclei in the used fuel
- 2. to shield against radiation from radioactive materials in the used fuel
- **3.** to prevent the possibility of a chain reaction occurring in the remaining uranium in the used fuel.

Which of these reasons are correct?

[1 mark]

A	1 and 2 only	0
В	1 and 3 only	0
С	2 and 3 only	0
D	1 and 2 and 3	0

19	A wheel has a The wheel ex is -20 rad s^{-1} How many re	an initial angular velocity of 10 rad s^{-1} . periences an angular acceleration of -2.0 rad s^{-2} until its angular velocity volutions does the wheel make during this change of angular velocity? [1 mark]
	A 12	\circ
	B 20	0
	C 75	0
	D 125	0
20	A remote isla electrical pow The island ne The island als	nd has renewable sources that generate between 2300 kW and 2900 kW of ver. eds a continuous power supply of 2500 kW . so has a pumped storage system that stores an energy of 60 MW h.
	The output of minimum valu	the renewable resources falls to its minimum value and remains at this ue.
	The renewab island's need	le sources together with the pumped storage system can only supply the s for a time <i>t</i> .
	What is <i>t</i> ?	[1 mark]
	A 300 h	0
	B 150 h	0
	C 30 h	0
	D 15 h	0

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

