OXFORDAQA

INTERNATIONAL QUALIFICATIONS

Please write clearly in	n block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	

INTERNATIONAL A-LEVEL PHYSICS

Unit 3 Fields and their consequences

Wednesday 10 January 2024 07:00 GMT

Time allowed: 2 hours

Materials

For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

	The spring constant of the rope is 161 N kg^{-1} . The mass of the jumper is 58 kg	Do not write outside the box
02.2	The rope has an extension of 19 m when the jumper is at R .	
	Calculate the jumper's acceleration at R . [2 marks]	
	acceleration = $\ m s^{-2}$	
	Consider the movement of the jumper from Q to R and back up to Q as simple harmonic motion for one half of an oscillation.	
02.3	Calculate the maximum amplitude of this oscillation. [2 marks]	
	maximum amplitude = m	
02.4	Calculate the time taken for the jumper to move from Q to R and back to Q . [3 marks]	
	time =s	

0 3	Figure 10 shows a cyclotron that is used to accelerate protons to high energies.	Do not write outside the box
	Figure 10	
	electrodes or dees	
	particle's path	
	yap	
þ	proton source	
	beam of high-energy protons	
	alternating	
	nign-voltage suppry	
	The cyclotron has two hollow semi-circular electrodes called dees. These dees are in a uniform magnetic field. The dees are connected to an alternating square-wave high-voltage supply.	
	Protons are released from the proton source. At the instant of release, the right-hand dee in Figure 10 is negative and the protons are initially attracted to it. They then follow the horizontal path shown and leave the cyclotron as a beam of high-energy protons.	
0 3 1	Determine the direction of the magnetic flux density inside the dees.	
	[1 mark]	

0 3.2	Discuss the motion of the protons in the cyclotron.	Do not write outside the box
	 You should consider: the forces acting on the protons the acceleration of the protons. 	
	Question 3 continues on the next page	

03.3	The alternating voltage has a constant frequency. Assume that a proton spends a negligible time in the gap between the dees. Ignore relativistic effects. State and explain any change to the angular velocity of a proton as it moves through the cyclotron. [1 mark]
03.4	One cyclotron has dees with a diameter of 0.36 m . The protons leave the cyclotron $3.45 \times 10^{-6} \text{ s}$ after leaving the source and each proton has an energy of 1.92 pJ . Calculate the speed of a proton as it leaves the cyclotron. [2 marks]

Do not write outside the box

0 3. 5 Show that a proton completes approximately 150 revolutions inside the cycloti [2	ron. 2 marks]	Do not write outside the box
03.6 Calculate the peak voltage of the high-voltage source.	3 marks]	
peak voltage =	V	15

IB/M/Jan24/PH03

		Do not write
0 4	Used fuel from a nuclear reactor contains many different radioactive isotopes.	box
	A fuel rod is stored until it is cool enough to be handled safely.	
	After 10.0 years the activity of caesium-134 in the rod is 1.80×10^4 GBq. Assume that no caesium-134 is produced during this period. Caesium-134 is a β^- emitter with a half-life of 2.06 years. 0.829 MeV is released in each caesium-134 decay.	
	1 year = 3.16×10^7 s	
04.1	Show that the initial activity of the caesium-134 is approximately 5×10^{14} Bq. [2 marks]	
04.2	Calculate, in g, the mass of caesium-134 initially present in the rod.	
	[3 marks]	
	maaa -	
	mass –g	

04.3	Calculate, in $W,$ the initial rate of energy release caused by caesium-134 β^- de the rod.	ecay in	Do not write outside the box
	[2	2 marks]	
	rate of energy release =	W	
04.4	The energy released in each decay is 0.829 MeV .		
	Discuss how:		
	 some of the decay energy causes heating of the fuel rod 		
	 some of the decay energy does not heat the fuel rod. [2] 	2 marks]	
			9
	Turn over for the payt question		

06.1	Explain how an emf is induced in S when the switch opens.	[1 mark]	Do not write outside the box
06.2	Explain two features of the system in Figure 14 that will result in a large em being produced.	f <i>ɛ</i> [2 marks]	
	2		
	Question 6 continues on the next page		
	Τι	urn over ►	

				Do not write outside the
	When there is	s a current in P , the flux linkage	in S is given by:	box
		\mathbf{T}		
		$\Psi_{\rm S} = \mu N_{\rm P} N_{\rm S} A \frac{1}{R}$		
	where	μ = a constant	$= 1.26 \times 10^{-6} \text{ V s A}^{-1} \text{ m}^{-2}$	1
		$N_{\rm P}$ = the number of turns on P	= 180	
		$N_{\rm S}$ = the number of turns on S	$= 20\ 000$	
		A = the cross-sectional area	of each coil = $6.0 \times 10^{-4} \text{ m}^2$	
		E = the emf of the battery	= 12 V	
		R = the resistance of the prin	nary circuit = 2.4 Ω	
06.3	Derive an exc	pression for <i>B</i> , the magnetic flux	density due to the current in P when	the
	switch is in th	ne closed position.	[2 ma	ırks]
			_	

06.4	The switch is opened and the current in P decreases to zero. The magnetic flux density due to the current in P decreases uniformly to zero in a time <i>t</i> . An emf ε of 30 kV is induced in S during the time <i>t</i> .	Do not write outside the box
	Calculate t. [2 marks]	
06.5	t = s An engineer suggests reducing the resistance <i>R</i> of the primary circuit.	
	Explain the effect that this reduction would have on the emf induced in S when the switch is opened. [2 marks]	
	END OF SECTION A	9

Section B	Do not write outside the box
Each of the questions in this section is followed by four responses, A , B , C and D .	
For each question select the best response.	
Only one answer per question is allowed. For each question, completely fill in the circle alongside the appropriate answer.	
CORRECT METHOD WRONG METHODS 🗴 💿	
If you want to change your answer you must cross out your original answer as shown.	
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.	
You may do your working in the blank space around each question but this will not be marked. Do not use additional pages for this working.	
0 7 What is the unit for the gravitational constant <i>G</i> in SI fundamental (base) units? [1 mark]	
A N m ² k σ^{-2}	
B kg m ² s ⁻²	
C $kg^{-1}m^3s^{-2}$	
D $kg^{-1}m^2s^{-2}$	
]

Two identical satellites **P** and **Q** are in circular orbits around the same planet. The orbital radius of **P** is smaller than the orbital radius of **Q**.

Which row shows the satellite with the greater kinetic energy and the satellite with the greater gravitational potential energy? [1 mark]

	Satellite with the greater kinetic energy	Satellite with the greater gravitational potential energy	
Α	Р	Р	0
В	Р	Q	0
С	Q	Р	0
D	Q	Q	0

Turn over for the next question

Do not write outside the 1 0 In the Rutherford scattering experiment, an alpha particle is moving directly towards a nucleus. The alpha particle stops for an instant at its distance of closest approach to the nucleus. A 4 MeV alpha particle is directed towards a zinc nucleus $\binom{64}{30}$ Zn). Its distance of closest approach to the nucleus is d_{χ} . An 8 MeV alpha particle is directed towards a thorium nucleus $\binom{232}{90}$ Th). Its distance of closest approach to the nucleus is $d_{\rm T}$. What is the value of $\frac{d_z}{d_r}$? [1 mark] **A** 0.67 \bigcirc \bigcirc **B** 0.75 **C** 1.5 \bigcirc **D** 1.8 \bigcirc Turn over for the next question

IB/M/Jan24/PH03

box

1 4	The e The e	electrostatic force between t electrostatic force between t	two protons in a nucleus is the electron and the proton	<i>F</i> . in a hydrogen atom is <i>f</i> .	Do not outside box
	What	is the order of magnitude o	of $\frac{F}{f}$?		
			J	[1 mark]	
	A 10	5 🕓			
	B 10	6 💿			
	C 10	10 🔿			
	D 10	15 💿			
	piane	B			
	Whick	n row shows the magnitude	and the direction of the for	rce experienced by the wire? [1 mark]	
	Whicł	n row shows the magnitude Magnitude of the force	and the direction of the force	rce experienced by the wire? [1 mark]	
	Which	n row shows the magnitude Magnitude of the force $\frac{\sqrt{3}}{2}BIL$	and the direction of the force Direction of the force out of the page	rce experienced by the wire? [1 mark]	
	Which A B	n row shows the magnitude Magnitude of the force $\frac{\sqrt{3}}{2}BIL$ $\frac{\sqrt{3}}{2}BIL$	and the direction of the for Direction of the force out of the page into the page	rce experienced by the wire? [1 mark]	
	Which A B C	n row shows the magnitude Magnitude of the force $\frac{\sqrt{3}}{2}BIL$ $\frac{\sqrt{3}}{2}BIL$ $\frac{1}{2}BIL$	and the direction of the for Direction of the force out of the page into the page out of the page	rce experienced by the wire? [1 mark]	

IB/M/Jan24/PH03

The pd across the capacitor decreases from $10\ V$ to $2.5\ V$ in $35\ s.$

A second circuit contains a capacitor of capacitance 3C that is discharged through a resistor of resistance $\frac{R}{2}$.

What is the time taken for the pd across the capacitor to decrease from $10~\rm V$ to $5.0~\rm V$ in the second circuit?

[1 mark]

- **B** 26 s
- **C** 23 s

 \bigcirc

D 12 s

2 0 An ideal transformer at a power station supplies power to a factory through transmission lines of resistance R.

What is the rate of energy dissipation in the transmission lines?

[1 mark]

Do not write outside the

box

D
$$\frac{N_{\rm s}^2}{N_{\rm p}^2} \frac{V_{\rm p}^2}{R}$$
 \bigcirc

	The nature of the lines	Positions where the magnitude of <i>F</i> is greatest	
Α	gravitational field lines	the lines are far apart	
в	gravitational field lines	the lines are close together	0
с	lines of equipotential	the lines are far apart	0
D	lines of equipotential	the lines are close together	

END OF QUESTIONS

15

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

