# OXFORDAQA

INTERNATIONAL QUALIFICATIONS

| Please write clearly ir | ו block capitals.              |   |
|-------------------------|--------------------------------|---|
| Centre number           | Candidate number               |   |
| Surname                 |                                |   |
| Forename(s)             |                                |   |
| Candidate signature     | I declare this is my own work. | / |

## INTERNATIONAL AS PHYSICS

Unit 2 Electricity, waves and particles

Tuesday 21 May 2024

07:00 GMT

## Time allowed: 2 hours

### Materials

For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate
- a protractor.

### Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.





|     | Section A                                                                                                 |            | Do not write<br>outside the<br>box |
|-----|-----------------------------------------------------------------------------------------------------------|------------|------------------------------------|
|     | Answer <b>all</b> questions in this section.                                                              |            |                                    |
| 0 1 | A simple pendulum completes 39 oscillations in 1.0 minute.                                                |            |                                    |
|     | Calculate the length of the pendulum.                                                                     | 2 marks]   |                                    |
|     |                                                                                                           |            |                                    |
|     |                                                                                                           |            |                                    |
|     | length =                                                                                                  | m          | 2                                  |
| 02  | Monochromatic light is incident on a clean metal surface and photoelectrons are emitted from the surface. |            |                                    |
|     | A photon of this light has energy of $4.5 \times 10^{-19}$ J.                                             |            |                                    |
|     | The stopping potential of the electrons is $1.1 \text{ V}$ .                                              |            |                                    |
|     | Calculate, in ${ m eV}$ , the work function of the metal.                                                 | 2 markel   |                                    |
|     | Ľ                                                                                                         | 2 11101 83 |                                    |
|     |                                                                                                           |            |                                    |
|     |                                                                                                           |            |                                    |
|     |                                                                                                           |            |                                    |
|     |                                                                                                           |            |                                    |
|     |                                                                                                           |            |                                    |
|     |                                                                                                           |            |                                    |
|     | work function =                                                                                           | eV         | 2                                  |
|     |                                                                                                           |            |                                    |
|     |                                                                                                           |            |                                    |
|     |                                                                                                           |            |                                    |
|     |                                                                                                           |            |                                    |







IB/M/Jun24/PH02











|       |                                                                                      |           | D   |
|-------|--------------------------------------------------------------------------------------|-----------|-----|
|       | Each cell has an emf of $1.50~V$ and an internal resistance of $0.25~\Omega.$        |           | out |
| 0 5.2 | On one occasion, a child fits five cells into the toy but leaves out cell <b>B</b> . |           |     |
|       | Suggest and explain the consequences of leaving out cell <b>B</b> .                  | [2 marks] |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |
|       |                                                                                      |           |     |







| 06   | A sodium lamp contains low-pressure sodium gas.<br>An electric current in the sodium gas causes the sodium atoms to emit light. | Do not writ<br>outside the<br>box |
|------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 06.1 | Explain how the sodium atoms become excited. [2 marks]                                                                          |                                   |
|      |                                                                                                                                 |                                   |
|      |                                                                                                                                 |                                   |
|      |                                                                                                                                 |                                   |
|      |                                                                                                                                 |                                   |
|      |                                                                                                                                 |                                   |
|      |                                                                                                                                 |                                   |
|      |                                                                                                                                 |                                   |
|      |                                                                                                                                 |                                   |
|      |                                                                                                                                 |                                   |
|      |                                                                                                                                 |                                   |
|      |                                                                                                                                 |                                   |
|      |                                                                                                                                 |                                   |
|      |                                                                                                                                 |                                   |



| Do not wri |                                                                                                                     |
|------------|---------------------------------------------------------------------------------------------------------------------|
| outside th | Figure 6 shows part of the line spectrum for the light emitted from the sodium lamp.                                |
|            | Figure 6                                                                                                            |
|            | 560 565 570 575 580 585 590<br>wavelength / nm                                                                      |
|            | <b>6</b> . <b>2</b> Explain why the spectrum produced by the sodium lamp has light of only certain                  |
|            | wavelengths. [3 marks]                                                                                              |
|            |                                                                                                                     |
|            |                                                                                                                     |
|            |                                                                                                                     |
|            |                                                                                                                     |
|            |                                                                                                                     |
|            |                                                                                                                     |
|            |                                                                                                                     |
|            | <b>6</b> . <b>3</b> Calculate, in J, the energy of the <b>least</b> energetic photon that corresponds to a spectral |
|            | line in Figure 6.<br>[3 marks]                                                                                      |
|            |                                                                                                                     |
|            |                                                                                                                     |
|            |                                                                                                                     |
|            |                                                                                                                     |
|            |                                                                                                                     |
|            |                                                                                                                     |
| 8          | photon energy =J                                                                                                    |
| 1          |                                                                                                                     |







10

| Question 7 continues on the next page                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
| where v is the speed of sound in air. [1 mark]                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |
| Show that <i>f</i> is given by $\frac{1}{f} = \frac{4L}{v} + \frac{4x}{v}$                                                                                                |                                                                                                                                                                                                                                                                                                                                                                              |
| to $\frac{\pi}{4}$ , where $\lambda$ is the wavelength of the stationary wave.                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |
| When a stationary wave of the first harmonic is formed, the distance <b>PQ</b> is equal $\lambda$                                                                         |                                                                                                                                                                                                                                                                                                                                                                              |
| The length $L$ of the column of air is varied.<br>The frequency $f$ of the first harmonic is recorded for each value of $L$ .                                             |                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
| at <b>Q</b>                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
| [2 marks]                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              |
| <ul><li>Q is a constant distance <i>x</i> above the top of the tube.</li><li>Describe the motion of the air molecules at P and at Q due to the stationary wave.</li></ul> |                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>the position P of a node at the surface of the water</li> <li>the position Q of an antinode.</li> </ul>                                                          |                                                                                                                                                                                                                                                                                                                                                                              |
| Figure 7 shows:                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
| There is an increase in loudness when a stationary wave forms in the air in the tube.<br>This stationary wave corresponds to the first harmonic.                          | Do not w<br>outside<br>box                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                           | There is an increase in loudness when a stationary wave forms in the air in the tube. This stationary wave corresponds to the first harmonic.<br>Figure 7 shows:<br>• the position Q of an antinode.<br>Q is a constant distance <i>x</i> above the top of the tube.<br>Describe the motion of the air molecules at P and at Q due to the stationary wave. [2 marks]<br>at P |



IB/M/Jun24/PH02







| 08.1    | Explain what is meant by modal dispersion in an optical fibre. [2 marks]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Do not write<br>outside the<br>box |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|         | The speed of light in the glass core of an optical fibre is $1.97 \times 10^8 \mbox{ m s}^{-1}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |
| 0 8.2   | Calculate the refractive index of the glass. [1 mark]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |
|         | refractive index =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
|         | A pulse of light is passed along the optical fibre and experiences modal dispersion. The fibre is straight and has a length of $10.0 \ {\rm km}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
|         | The longest path of light along the fibre is at an angle $	heta_{\max}$ to the central axis as shown in <b>Figure 9</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
|         | The shortest path of light along the fibre is along the central axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |
|         | Figure 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|         | not to scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |
| claddin | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & &$ |                                    |



|         | There is a time delay of $13.7 \ \mu s$ between the arrival of the pulse when it follows the | Do not write<br>outside the<br>box |
|---------|----------------------------------------------------------------------------------------------|------------------------------------|
|         | longest path and when it follows the shortest path.                                          |                                    |
| 0 8 . 3 | Show that the length of the longest path is approximately $12.7 \text{ km}$ .<br>[2 marks]   |                                    |
|         |                                                                                              |                                    |
|         |                                                                                              |                                    |
|         |                                                                                              |                                    |
|         |                                                                                              |                                    |
|         |                                                                                              |                                    |
|         |                                                                                              |                                    |
| 08.4    | Calculate $\theta_{\max}$ .                                                                  |                                    |
|         | [1 mark]                                                                                     |                                    |
|         |                                                                                              |                                    |
|         |                                                                                              |                                    |
|         | $	heta_{ m max} =$ $\circ$                                                                   |                                    |
|         |                                                                                              |                                    |
|         |                                                                                              |                                    |
|         | Question 8 continues on the next page                                                        |                                    |
|         |                                                                                              |                                    |
|         |                                                                                              |                                    |
|         |                                                                                              |                                    |
|         |                                                                                              |                                    |
|         |                                                                                              |                                    |
|         |                                                                                              |                                    |
|         |                                                                                              |                                    |

1 5

Turn over 🕨











|      |                                                                                                                                     | Do not write<br>outside the |
|------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|      | <b>Figure 12</b> shows the interference pattern from this experiment.<br>The scale of the image is shown.                           | box                         |
|      | Figure 12                                                                                                                           |                             |
|      | $1.0 \times 10^{-4} \text{ rad}$                                                                                                    |                             |
|      |                                                                                                                                     |                             |
|      | The slit separation of the double slit is $496 \text{ nm}$ .                                                                        |                             |
| 09.2 | Show that the de Broglie wavelength of the electrons is approximately $1\times 10^{-11}m.$                                          |                             |
|      | In your answer:                                                                                                                     |                             |
|      | <ul> <li>annotate Figure 12 to show how you made your measurements</li> <li>use the relationship given in Question 09.1.</li> </ul> |                             |
|      | [4 marks]                                                                                                                           |                             |
|      |                                                                                                                                     |                             |
|      |                                                                                                                                     |                             |
|      |                                                                                                                                     |                             |
|      |                                                                                                                                     |                             |
|      |                                                                                                                                     |                             |
|      |                                                                                                                                     |                             |
|      |                                                                                                                                     |                             |
|      |                                                                                                                                     |                             |
|      |                                                                                                                                     |                             |
|      |                                                                                                                                     |                             |
|      |                                                                                                                                     |                             |
|      | Question 9 continues on the next page                                                                                               |                             |
|      |                                                                                                                                     | ]                           |









|      | The resistance of the copper wire in the power cord must be much less than resistance of the nichrome wire.                                                                                                                              | n the     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 10.2 | Explain why.                                                                                                                                                                                                                             | [3 marks] |
|      |                                                                                                                                                                                                                                          |           |
|      |                                                                                                                                                                                                                                          |           |
|      |                                                                                                                                                                                                                                          |           |
|      |                                                                                                                                                                                                                                          |           |
|      |                                                                                                                                                                                                                                          |           |
| 10.3 | The resistivity of nichrome is $1.12 \times 10^{-6} \Omega \text{ m}$ at its operating temperature.<br>The resistance of the nichrome wire is $18 \Omega$ at this temperature.<br>The radius of the nichrome wire is $0.16 \text{ mm}$ . |           |
|      | Calculate the length of the nichrome wire.                                                                                                                                                                                               | [2 marks] |
|      |                                                                                                                                                                                                                                          |           |
|      |                                                                                                                                                                                                                                          |           |
|      | length =                                                                                                                                                                                                                                 | m         |
|      |                                                                                                                                                                                                                                          |           |
|      |                                                                                                                                                                                                                                          |           |
|      |                                                                                                                                                                                                                                          |           |



Do not write outside the box

| 10.4 | When the kettle is switched on, the temperature of the nichrome wire increases rapidly for about $5 \text{ ms}$ , until the nichrome wire reaches its operating temperature. The temperature then remains constant. | Do not write<br>outside the<br>box |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|      | Explain how the power consumption of the kettle varies for the first $10 \text{ ms}$ .<br>Calculations are not required.                                                                                            |                                    |
|      | [3 marks]                                                                                                                                                                                                           |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     | 9                                  |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      | Turn over for the next question                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      |                                                                                                                                                                                                                     |                                    |
|      | Turn over ►                                                                                                                                                                                                         | •                                  |







| 1 1.2 | Calculate the percentage uncertainty in your value of <i>x</i> .                                                                                               | Do not write<br>outside the<br>box |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|       | [1 mark]                                                                                                                                                       |                                    |
|       |                                                                                                                                                                |                                    |
|       |                                                                                                                                                                |                                    |
|       |                                                                                                                                                                |                                    |
|       | percentage uncertainty -                                                                                                                                       |                                    |
|       |                                                                                                                                                                |                                    |
| 1 1.3 | The student measures $D$ as 200.0 cm.<br>The diffraction grating has 100 lines per mm.                                                                         |                                    |
|       | Calculate, in nm, the wavelength $\lambda$ of the laser light.<br>[3 marks]                                                                                    |                                    |
|       | [                                                                                                                                                              |                                    |
|       |                                                                                                                                                                |                                    |
|       |                                                                                                                                                                |                                    |
|       |                                                                                                                                                                |                                    |
|       |                                                                                                                                                                |                                    |
|       |                                                                                                                                                                |                                    |
|       |                                                                                                                                                                |                                    |
|       | $\lambda = $ nm                                                                                                                                                |                                    |
| 11.4  | The diffraction grating is now replaced with a grating that has a larger number of lines per ${ m mm}$ . The uncertainty in the grating spacing is negligible. |                                    |
|       | Discuss how this will affect the percentage uncertainty in the measured value of $\lambda$ . [2 marks]                                                         |                                    |
|       |                                                                                                                                                                |                                    |
|       |                                                                                                                                                                |                                    |
|       |                                                                                                                                                                | <u></u>                            |
|       | END OF SECTION B                                                                                                                                               |                                    |



IB/M/Jun24/PH02

| Section C                                                                                                                                                                                                     | Do not write<br>outside the<br>box |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Each of the questions in this section is followed by four responses, <b>A</b> , <b>B</b> , <b>C</b> and <b>D</b> .                                                                                            |                                    |
| For each question select the best response.                                                                                                                                                                   |                                    |
| Only <b>one</b> answer per question is allowed.<br>For each question, completely fill in the circle alongside the appropriate answer.<br>CORRECT METHOD • WRONG METHODS • • • • • • • • • • • • • • • • • • • |                                    |
| Do <b>not</b> use additional pages for this working.<br><b>1 2</b> What is the unit for resistivity in SI fundamental (base) units?<br><b>[1 mark]</b>                                                        |                                    |
| <b>A</b> kg m <sup>3</sup> s <sup>-2</sup> A <sup>-1</sup>                                                                                                                                                    |                                    |
| <b>B</b> kg m <sup>3</sup> s <sup>-3</sup> A <sup>-1</sup>                                                                                                                                                    |                                    |
| <b>C</b> kg m <sup>3</sup> s <sup>-2</sup> A <sup>-2</sup>                                                                                                                                                    |                                    |
| <b>D</b> kg m <sup>3</sup> s <sup>-3</sup> A <sup>-2</sup>                                                                                                                                                    |                                    |
|                                                                                                                                                                                                               |                                    |
|                                                                                                                                                                                                               |                                    |
|                                                                                                                                                                                                               |                                    |
|                                                                                                                                                                                                               |                                    |
|                                                                                                                                                                                                               |                                    |
|                                                                                                                                                                                                               |                                    |
|                                                                                                                                                                                                               |                                    |











**15** In the circuit shown, the cell has negligible internal resistance. **T** is a negative temperature coefficient thermistor.



The temperature of the thermistor changes, causing an increase in the current.

Which row shows the change in temperature and the effect this change has on the voltmeter reading?

[1 mark]

|   | Change in temperature | Effect on voltmeter reading |   |
|---|-----------------------|-----------------------------|---|
| A | increase              | increase                    | C |
| В | increase              | decrease                    | C |
| С | decrease              | increase                    | C |
| D | decrease              | decrease                    | C |

Turn over for the next question



Turn over ►

| Image: Section 16 and 17 are about the following experiment.         A student uses a stopwatch to investigate the time period of a pendulum.         There is an absolute uncertainty of 0.2 s at the beginning and the end of each timing.         Image: Section 16 and 17 are about the period of 0.2 s at the beginning and the end of each timing.         Image: Section 16 and 17 are about the period of 0.2 s at the beginning and the end of each timing.         Image: Section 16 and 17 are about the period 0.2 s at the beginning and the end of each timing.         Image: Section 16 and 17 are about the period 0.2 s at the beginning and the end of each timing.         Image: Section 16 and 17 are about the period 0.2 s at the beginning and the end of each timing.         Image: Section 16 and 17 are about the period 0.2 s at the beginning and the end of each timing.         Image: Section 16 and 17 are about the period of 1.0 s.         What is the best estimate for the percentage uncertainty of the time period of the pendulum?         Image: Section 17 are 2.7%         Image: Section 17 are about the period 18 are 2.7%         Image: Section 18 are 2.7% <t< th=""><th>Questions 16 and 17 are about the following experiment.   A student uses a stopwatch to investigate the time period of a pendulum.   There is an absolute uncertainty of 0.2 s at the beginning and the end of each timing.   16   The student measures ten oscillations of the pendulum. The stopwatch records the time for ten oscillations to be 15.07 s.   What is the best estimate for the percentage uncertainty of the time period of the pendulum?   1   A 2.7%   B 1.3%   C 0.27%   D 0.13%   The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:   15.07 s   17   17</th><th>Questions 16 and 17 are about the following experiment.   A student uses a stopwatch to investigate the time period of a pendulum.   There is an absolute uncertainty of 0.2 s at the beginning and the end of each timing.   1 • 6   The student measures ten oscillations of the pendulum. The stopwatch records the time for ten oscillations to be 15.07 s.   What is the best estimate for the percentage uncertainty of the time period of the pendulum?   Imark]   A 2.7%   C 0.27%   D 0.13%   The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:   15.07 s   15.0</th><th></th><th></th><th></th><th></th><th></th><th></th></t<> | Questions 16 and 17 are about the following experiment.   A student uses a stopwatch to investigate the time period of a pendulum.   There is an absolute uncertainty of 0.2 s at the beginning and the end of each timing.   16   The student measures ten oscillations of the pendulum. The stopwatch records the time for ten oscillations to be 15.07 s.   What is the best estimate for the percentage uncertainty of the time period of the pendulum?   1   A 2.7%   B 1.3%   C 0.27%   D 0.13%   The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:   15.07 s   17   17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Questions 16 and 17 are about the following experiment.   A student uses a stopwatch to investigate the time period of a pendulum.   There is an absolute uncertainty of 0.2 s at the beginning and the end of each timing.   1 • 6   The student measures ten oscillations of the pendulum. The stopwatch records the time for ten oscillations to be 15.07 s.   What is the best estimate for the percentage uncertainty of the time period of the pendulum?   Imark]   A 2.7%   C 0.27%   D 0.13%   The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:   15.07 s   15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                            |                                     |                                    |                           |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------|-------------------------------------|------------------------------------|---------------------------|-------------------------------|
| A student uses a stopwatch to investigate the time period of a pendulum.<br>There is an absolute uncertainty of 0.2 s at the beginning and the end of each timing.<br>16 The student measures ten oscillations of the pendulum. The stopwatch records the time for ten oscillations to be 15.07 s.<br>What is the best estimate for the percentage uncertainty of the time period of the pendulum?<br>A 2.7% $\square$<br>B 1.3% $\square$<br>C 0.27% $\square$<br>D 0.13% $\square$<br>The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:<br>15.07 s 15.35 s 15.02 s 14.92 s<br>What is the best estimate for the percentage uncertainty in this set of measurements?<br>[1 mark]<br>A 0.14% $\square$<br>B 1.4% $\square$<br>C 2.7% $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A student uses a stopwatch to investigate the time period of a pendulum.<br>There is an absolute uncertainty of 0.2 s at the beginning and the end of each timing.<br>16<br>The student measures ten oscillations of the pendulum. The stopwatch records the time<br>for ten oscillations to be 15.07 s.<br>What is the best estimate for the percentage uncertainty of the time period of<br>the pendulum?<br>[1 mark]<br>A 2.7%<br>B 1.3%<br>C 0.27%<br>D 0.13%<br>C 0.27%<br>17<br>The student repeats the measurement three more times. His four measurements of the<br>time for ten oscillations are:<br>15.07 s<br>15.07 s<br>15.02 s<br>14.92 s<br>What is the best estimate for the percentage uncertainty in this set of measurements?<br>[1 mark]<br>A 0.14%<br>C 2.7%<br>C | A student uses a stopwatch to investigate the time period of a pendulum.<br>There is an absolute uncertainty of 0.2 s at the beginning and the end of each timing.<br>The student measures ten oscillations of the pendulum. The stopwatch records the time for ten oscillations to be 15.07 s.<br>What is the best estimate for the percentage uncertainty of the time period of the pendulum?<br><b>1</b> a 2.7%<br><b>a</b> 2.7%<br><b>b</b> 1.3%<br><b>c</b> 0.27%<br><b>c</b> 0.27%<br><b>c</b> 0.27%<br><b>c</b> 0.13%<br><b>c</b> 0.13%<br><b>c</b> 15.35 s 15.02 s 14.92 s<br>What is the best estimate for the percentage uncertainty in this set of measurements?<br><b>1 1 1 1 1 1 1 1 1 1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | Questions 16                               | and 17 are                          | about the follow                   | ng experiment.            |                               |
| 1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7         1       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | There is an absolute uncertainty of 0.2 s at the beginning and the end of each timing.         16       The student measures ten oscillations of the pendulum. The stopwatch records the time for ten oscillations to be 15.07 s.         What is the best estimate for the percentage uncertainty of the time period of the pendulum?       Image: mark term of the percentage uncertainty of the time period of the pendulum?         A 2.7%       Image: mark term of the percentage uncertainty of the time period of the pendulum?       Image: mark term of the percentage uncertainty of the time period of the pendulum?         A 2.7%       Image: mark term of the percentage uncertainty of the time period of the pendulum?       Image: mark term of the percentage uncertainty of the time period of the pendulum?         Image: mark term of the percentage uncertainty of the time period of the pendulum?       Image: mark term of the percentage uncertainty in this set of measurements of the time for ten oscillations are:         Image: mark term of the percentage uncertainty in this set of measurements?       Image: mark term of the percentage uncertainty in this set of measurements?         Image: mark term of the percentage uncertainty in this set of measurements?       Image: mark term of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | There is an absolute uncertainty of 0.2 s at the beginning and the end of each timing.   16   The student measures ten oscillations of the pendulum. The stopwatch records the time for ten oscillations to be 15.07 s.   What is the best estimate for the percentage uncertainty of the time period of the pendulum?   A 2.7%   B 1.3%   C 0.27%   D 0.13%   C 17   The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:   15.07 s   15.07 s </td <td></td> <td>A student use</td> <td>s a stopwate</td> <td>ch to investigate th</td> <td>e time period of a pendu</td> <td>ılum.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | A student use                              | s a stopwate                        | ch to investigate th               | e time period of a pendu  | ılum.                         |
| 1       6       The student measures ten oscillations of the pendulum. The stopwatch records the time for ten oscillations to be 15.07 s.         What is the best estimate for the percentage uncertainty of the time period of the pendulum?       [1 mark]         A       2.7%       □         B       1.3%       □         C       0.27%       □         D       0.13%       □         1       7       The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         15.07 s       15.35 s       15.02 s       14.92 s         What is the best estimate for the percentage uncertainty in this set of measurements?       [1 mark]         A       0.14%       □       [2 mark]         A       0.14%       □       [2 mark]         D       2.8%       □       [3 mark]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16       The student measures ten oscillations of the pendulum. The stopwatch records the time for ten oscillations to be 15.07 s.         What is the best estimate for the percentage uncertainty of the time period of the pendulum?       [1 mark]         A 2.7%       □         B 1.3%       □         C 0.27%       □         D 0.13%       □         17       The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         15.07 s       15.35 s       15.02 s       14.92 s         What is the best estimate for the percentage uncertainty in this set of measurements?       [1 mark]         A 0.14%       □       [1 mark]         B 1.4%       □       [2 .7%       □         D 2.8%       □       □       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16       The student measures ten oscillations of the pendulum. The stopwatch records the time for ten oscillations to be 15.07 s.         What is the best estimate for the percentage uncertainty of the time period of the pendulum?       [1 mark]         A 2.7%       □         B 1.3%       □         C 0.27%       □         D 0.13%       □         17       The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         15.07 s       15.35 s       15.02 s       14.92 s         What is the best estimate for the percentage uncertainty in this set of measurements?       [1 mark]         A 0.14%       □       [1 mark]         D 2.8%       □       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | There is an at                             | osolute unce                        | rtainty of $0.2~\mathrm{s}$ at the | ne beginning and the en   | d of each timing.             |
| Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Image: state of the percentage uncertainty of the time period of the pendulum?       [1 mark]         A       2.7% $\Box$ B       1.3% $\Box$ C       0.27% $\Box$ D       0.13% $\Box$ 1       7       The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         1.7       15.07 s       15.35 s       15.02 s       14.92 s         Matting the best estimate for the percentage uncertainty in this set of measurements?       [1 mark]         A       0.14% $\Box$ B       1.4% $\Box$ $\Box$ A       0.14% $\Box$ $\Box$ B       1.4% $\Box$ $\Box$ $\Box$ A       0.14% $\Box$ $\Box$ B       1.4% $\Box$ $\Box$ D       2.8% $\Box$ $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Image: the last of the percentage uncertainty of the time period of the pendulum?       [1 mark]         A       2.7% $\square$ B       1.3% $\square$ C       0.27% $\square$ D       0.13% $\square$ The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:       15.07 s         1.7       The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         1.7       The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         1.7       The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         1.6       0.13% $\square$ 1.7       The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         1.7.1       The student repeats the measurement three more times. His four measurements?         1.6       0.14% $\square$ 2.7% $\square$ $\square$ 2.8% $\square$ $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 6   | The student n<br>for ten oscillat          | neasures ter<br>ions to be 1        | oscillations of the 5.07 s.        | pendulum. The stopwa      | tch records the time          |
| Image: Interpendulum?       [1 mark]         A       2.7%         B       1.3%         C       0.27%         D       0.13%         T       The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         15.07 s       15.35 s       15.02 s       14.92 s         What is the best estimate for the percentage uncertainty in this set of measurements?       [1 mark]         A       0.14%       □         B       1.4%       □         C       2.7%       □         D       2.8%       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Image: Interpenduting       [1 mark]         A 2.7%       □         B 1.3%       □         C 0.27%       □         D 0.13%       □         17       The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         15.07 s       15.35 s       15.02 s       14.92 s         What is the best estimate for the percentage uncertainty in this set of measurements? [1 mark]         A 0.14%       □         C 2.7%       □         D 2.8%       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Image: Interpetation of the percentage uncertainty in this set of measurements?         Image: Imag                 |       | What is the be                             | est estimate                        | for the percentage                 | uncertainty of the time   | period of                     |
| A 2.7% $\bigcirc$ B 1.3% $\bigcirc$ C 0.27% $\bigcirc$ D 0.13% $\bigcirc$ 17       The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         15.07 s       15.35 s       15.02 s       14.92 s         What is the best estimate for the percentage uncertainty in this set of measurements? If mark]         A 0.14% $\bigcirc$ E 1.4% $\bigcirc$ D 2.8% $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A2.7% $\bigcirc$ B1.3% $\bigcirc$ C0.27% $\bigcirc$ D0.13% $\bigcirc$ The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:<br>15.07 s15.35 s15.02 s14.92 sMat is the best estimate for the percentage uncertainty in this set of measurements?<br>[1 mark]A0.14% $\bigcirc$ B1.4% $\bigcirc$ $\bigcirc$ $\Box$ $\Box$ $\Box$ D2.8% $\bigcirc$ $\bigcirc$ $\Box$ $\Box$ $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A2.7% $\bigcirc$ B1.3% $\bigcirc$ C0.27% $\bigcirc$ D0.13% $\bigcirc$ 17The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:15.07 s15.35 s15.02 s14.92 sWhat is the best estimate for the percentage uncertainty in this set of measurements?Imark]AA0.14% $\bigcirc$ Imark]A0.14% $\bigcirc$ Imark]D2.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | the pendulum                               | ſ                                   |                                    |                           | [1 mark]                      |
| B 1.3%       Image: C 0.27%         C 0.27%       Image: C 0.27%         D 0.13%       Image: C 0.27%         The student repeats the measurement three more times. His four measurements of the time for ten oscillations are: $1.7$ The student repeats the measurement three more times. His four measurements of the time for ten oscillations are: $15.07 \text{ s}$ $15.35 \text{ s}$ $15.02 \text{ s}$ $14.92 \text{ s}$ What is the best estimate for the percentage uncertainty in this set of measurements?       Imark]         A 0.14%       Imark]         B 1.4%       Imark]         C 2.7%       Imark]         D 2.8%       Imark]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1.3% $\bigcirc$ C0.27% $\bigcirc$ D0.13% $\bigcirc$ The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:15.07 s15.35 s15.02 s14.92 sWhat is the best estimate for the percentage uncertainty in this set of measurements?A0.14% $\bigcirc$ B1.4% $\bigcirc$ C2.7% $\bigcirc$ D2.8% $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B $1.3\%$ $\bigcirc$ C $0.27\%$ $\bigcirc$ D $0.13\%$ $\bigcirc$ 17The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:<br>$15.07 \text{ s}$ 15 $15.35 \text{ s}$ $15.02 \text{ s}$ $14.92 \text{ s}$ What is the best estimate for the percentage uncertainty in this set of measurements?<br>I mark]A $0.14\%$ $\bigcirc$ B $1.4\%$ $\bigcirc$ C $2.7\%$ $\bigcirc$ D $2.8\%$ $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | <b>A</b> 2.7%                              | 0                                   |                                    |                           |                               |
| C $0.27\%$ $\bigcirc$ D $0.13\%$ $\bigcirc$ The student repeats the measurement three more times. His four measurements of the time for ten oscillations are: $15.07 \text{ s}$ $15.35 \text{ s}$ $15.02 \text{ s}$ $14.92 \text{ s}$ What is the best estimate for the percentage uncertainty in this set of measurements?A $0.14\%$ $\bigcirc$ $\square$ B $1.4\%$ $\bigcirc$ $\square$ C $2.7\%$ $\bigcirc$ D $2.8\%$ $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C $0.27\%$ $\bigcirc$ D $0.13\%$ $\bigcirc$ The student repeats the measurement three more times. His four measurements of the time for ten oscillations are: $15.07 \text{ s}$ $15.35 \text{ s}$ $15.02 \text{ s}$ $14.92 \text{ s}$ Matrix 15.07 s $15.35 \text{ s}$ $15.02 \text{ s}$ $14.92 \text{ s}$ $14.92 \text{ s}$ What is the best estimate for the percentage uncertainty in this set of measurements? $[1 \text{ mark}]$ A $0.14\%$ $\bigcirc$ B $1.4\%$ $\bigcirc$ C $2.7\%$ $\bigcirc$ D $2.8\%$ $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C $0.27\%$ $\odot$ D $0.13\%$ $\odot$ 17The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:15.07 s $15.35$ s $15.02$ s $14.92$ sWhat is the best estimate for the percentage uncertainty in this set of measurements?<br>If mark]A $0.14\%$ $\odot$ B $1.4\%$ $\odot$ C $2.7\%$ $\odot$ D $2.8\%$ $\odot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | <b>B</b> 1.3%                              | 0                                   |                                    |                           |                               |
| Image: D0.13% $\bigcirc$ Image: The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:15.07 s15.35 s15.02 s14.92 sImage: Main term of term of term oscillations are:Image: Main term oscillations are:Imag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IO0.13% $\bigcirc$ 1The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:<br>$15.07 \text{ s}$ $15.35 \text{ s}$ $15.02 \text{ s}$ $14.92 \text{ s}$ What is the best estimate for the percentage uncertainty in this set of measurements?<br>I mark]A0.14% $\bigcirc$ $[1 \text{ mark}]$ B1.4% $\bigcirc$ $\bigcirc$ C2.7% $\bigcirc$ $\bigcirc$ D2.8% $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D $0.13\%$ $\Box$ <b>1</b> The student repeats the measurement three more times. His four measurements of the time for ten oscillations are: $15.07 \text{ s}$ $15.35 \text{ s}$ $15.02 \text{ s}$ $14.92 \text{ s}$ What is the best estimate for the percentage uncertainty in this set of measurements? If mark]A $0.14\%$ $\Box$ B $1.4\%$ $\Box$ C $2.7\%$ $\Box$ D $2.8\%$ $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | <b>C</b> 0.27%                             | 0                                   |                                    |                           |                               |
| 1       7         The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         15.07 s       15.35 s       15.02 s       14.92 s         What is the best estimate for the percentage uncertainty in this set of measurements?       [1 mark]         A       0.14%       □         B       1.4%       □         C       2.7%       □         D       2.8%       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1       7         The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         15.07 s       15.35 s       15.02 s       14.92 s         What is the best estimate for the percentage uncertainty in this set of measurements?       [1 mark]         A       0.14%       □         B       1.4%       □         C       2.7%       □         D       2.8%       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       7         The student repeats the measurement three more times. His four measurements of the time for ten oscillations are:         15.07 s       15.35 s       15.02 s       14.92 s         What is the best estimate for the percentage uncertainty in this set of measurements?       [1 mark]         A       0.14%       □         B       1.4%       □         C       2.7%       □         D       2.8%       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | <b>D</b> 0.13%                             | 0                                   |                                    |                           |                               |
| What is the best estimate for the percentage uncertainty in this set of measurements?   [1 mark]   A 0.14%   B 1.4%   C 2.7%   D 2.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | What is the best estimate for the percentage uncertainty in this set of measurements?<br>[1 mark]A $0.14\%$ $\bigcirc$ B $1.4\%$ $\bigcirc$ C $2.7\%$ $\bigcirc$ D $2.8\%$ $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | What is the best estimate for the percentage uncertainty in this set of measurements?<br>[1 mark]A $0.14\%$ B $1.4\%$ OOC $2.7\%$ OOD $2.8\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   7 | The student re<br>time for ten os<br>15.07 | epeats the m<br>scillations ar<br>s | neasurement three<br>e:<br>15.35 s | more times. His four m    | easurements of the<br>14.92 s |
| A 0.14%       Image: Colored and the second and the seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A 0.14%       Image: Colored state         B 1.4%       Image: Colored state         C 2.7%       Image: Colored state         D 2.8%       Image: Colored state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A 0.14%       Image: Comparison of the second |       | What is the be                             | est estimate                        | for the percentage                 | uncertainty in this set o | f measurements?<br>[1 mark]   |
| B 1.4% □<br>C 2.7% □<br>D 2.8% □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B       1.4%       □         C       2.7%       □         D       2.8%       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B       1.4%         C       2.7%         D       2.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | <b>A</b> 0.14%                             | 0                                   |                                    |                           |                               |
| C 2.7%<br>D 2.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C 2.7%<br>D 2.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C 2.7%<br>D 2.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | <b>B</b> 1.4%                              | 0                                   |                                    |                           |                               |
| D 2.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D 2.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D 2.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | <b>C</b> 2.7%                              | 0                                   |                                    |                           |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | <b>D</b> 2.8%                              | 0                                   |                                    |                           |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                            |                                     |                                    |                           |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                            |                                     |                                    |                           |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                            |                                     |                                    |                           |                               |







## A transverse wave is created by oscillating a string of beads.

1 9

**Graph 1** shows the variation of the displacement of each bead with the distance measured from a fixed point along the wave.

#### Graph 1



Graph 2 shows the variation of the displacement of a particular bead with time.





Which row gives the wavelength and frequency of the wave?

[1 mark]

Do not write outside the

box

|   | Wavelength | Frequency     |   |
|---|------------|---------------|---|
| Α | K          | Н             | 0 |
| в | K          | $\frac{1}{H}$ | 0 |
| с | 2K         | Н             | 0 |
| D | 2K         | $\frac{1}{H}$ | 0 |



## **2 0** Sound travels at a speed v in air and at a speed 4.5v in water.

A sound wave with a wavelength  $\lambda$  is produced in air. The wave passes from air into water.

Which row shows the wavelength and the nature of the wave in water?

[1 mark]

Do not write outside the box

|   | Wavelength | Nature       |                      |
|---|------------|--------------|----------------------|
| Α | 4.5λ       | longitudinal | 0                    |
| в | λ          | longitudinal | <ul> <li></li> </ul> |
| с | 4.5λ       | transverse   | $\bigcirc$           |
| D | λ          | transverse   | 0                    |

2 1

The frequency of the first harmonic of a violin string is 440 Hz.

The tension in the string is increased by 8%. The length and mass of the string do not change.

What is the new frequency of the first harmonic of the string?

[1 mark]



**B** 457 Hz ○

- **C** 452 Hz  $\bigcirc$
- **D** 422 Hz  $\bigcirc$



| 22  | Manachromatic light is insident normally on a diffraction grating                                                                                                             | Do not write<br>outside the<br>box |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|     | The first order maximum is cheered at an angle of 180 to the zero order maximum                                                                                               | box                                |
|     | What is the largest angle at which a maximum see he found?                                                                                                                    |                                    |
|     | [1 mark]                                                                                                                                                                      |                                    |
|     | A 90°                                                                                                                                                                         |                                    |
|     | <b>B</b> 72°                                                                                                                                                                  |                                    |
|     | <b>C</b> 68°                                                                                                                                                                  |                                    |
|     | D 54°                                                                                                                                                                         |                                    |
|     |                                                                                                                                                                               |                                    |
| 2 3 | Light is incident on a Perspex–air boundary and is partially reflected and partially refracted.<br>The incident and reflected rays are shown. The refracted ray is not shown. |                                    |
|     | not to scale                                                                                                                                                                  |                                    |
|     | incident ray 36°                                                                                                                                                              |                                    |
|     | Perspex                                                                                                                                                                       |                                    |
|     |                                                                                                                                                                               |                                    |
|     | air                                                                                                                                                                           |                                    |
|     |                                                                                                                                                                               |                                    |
|     | The reflected ray is deflected by a total angle of $36^\circ$ from the incident ray. The refractive index of Perspex is $1.5$                                                 |                                    |
|     | What is the angle of refraction in air for the refracted ray? [1 mark]                                                                                                        |                                    |
|     | A 12°                                                                                                                                                                         |                                    |
|     | B 23°                                                                                                                                                                         |                                    |
|     | <b>C</b> 28°                                                                                                                                                                  |                                    |
|     | <b>D</b> 62°                                                                                                                                                                  |                                    |
|     |                                                                                                                                                                               |                                    |
|     |                                                                                                                                                                               |                                    |
|     |                                                                                                                                                                               |                                    |
|     |                                                                                                                                                                               |                                    |



## **2 4** A monochromatic light source **X** produces $N_X$ photons per second, each with energy $E_X$ . A monochromatic light source **Y** has the same power as **X** and emits light with a smaller frequency than **X**.

**Y** produces  $N_{\rm Y}$  photons per second, each with energy  $E_{\rm Y}$ .

Which row shows how  $N_{\rm X}$  compares with  $N_{\rm Y}$  and how  $E_{\rm X}$  compares with  $E_{\rm Y}$ ?

[1 mark]

Do not write outside the box



### Turn over for the next question

Turn over ►









| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|--------------------|--------------------------------------------------------------------------------------|
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |



| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|--------------------|--------------------------------------------------------------------------------------|
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |



|    | Do not write<br>outside the<br>box |
|----|------------------------------------|
| n. |                                    |
|    |                                    |
|    |                                    |

| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin.                                                                                                                                                                                                     |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                          |
|                    | Copyright information                                                                                                                                                                                                                                                                    |
|                    | For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com                                         |
|                    | Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. |
|                    | Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.                                                                                                                                                                                            |



